Prove that: (i) \( \int 1 / \sqrt{\left(1-x^{2}\right)} \cdot d x=\sin ^{-1} x+C \) (ii) \( \int...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=ec1G1TBfwvg
Prove that:
(i) \( \int 1 / \sqrt{\left(1-x^{2}\right)} \cdot d x=\sin ^{-1} x+C \)
(ii) \( \int 1 /\left(1+x^{2}\right) \cdot d x=\tan ^{-1} x+C \)
(iii) \( \int 1 /|x| \sqrt{\left(x^{2}-1\right)} \cdot d x=\sec ^{-1} x+C \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live