Research talk: Causal learning: Discovering causal relations for out-of-distribution generalization

Subscribers:
345,000
Published on ● Video Link: https://www.youtube.com/watch?v=D6Tn3UYLbIU



Duration: 4:31
637 views
0


Speaker: Wei Chen, Principal Researcher, Microsoft Research Asia

Machine learning models should be explainable and robust on out-of-distribution samples, especially on safety-critical tasks such as healthcare, and security. However, current models heavily rely on i.i.d assumption, and are therefore sensitive to OOD data. In this talk, Wei Chen, from the Computing and Learning Theory group at Microsoft Research Asia, will show how causal inference tools can be leveraged to empower machine learning models and make them more robust. To achieve this goal, we propose the causal invariance model, which can eliminate spurious correlations and keep only causal relation for prediction, and we will show both theoretical and empirical proof.

Learn more about the 2021 Microsoft Research Summit: https://Aka.ms/researchsummit




Other Videos By Microsoft Research


2022-02-08Future of technology in combatting disease and disparities in treatment: A cardiovascular case study
2022-02-08Research talks: Showcasing health equity, access, and resilience collaborations
2022-02-08Opening remarks: Health & Life Sciences - Discovery
2022-02-08The role of tech in decreasing health inequities, improving access, and strengthening resilience
2022-02-08Opening remarks: Health and Life Sciences - Delivery
2022-02-08Closing remarks: Causal Machine Learning
2022-02-08Demo: Enabling end-to-end causal inference at scale
2022-02-08Research Talk: Enhancing the robustness of massive language models via invariant risk minimization
2022-02-08Research talk: Post-contextual-bandit inference
2022-02-08Research talk: Causal ML and fairness
2022-02-08Research talk: Causal learning: Discovering causal relations for out-of-distribution generalization
2022-02-08Research talk: Can causal learning improve the privacy of ML models?
2022-02-08Research talk: Causal ML and business
2022-02-08Research talk: Challenges and opportunities in causal machine learning
2022-02-08Opening remarks: Causal Machine Learning
2022-02-08Closing remarks: The Future of Privacy and Security
2022-02-08Demo: Generating formally proven low-level parsers with EverParse
2022-02-08Demo: EverParse: Automatic generation of formally verified secure parsers for cloud integrity
2022-02-08Research talk: DARPA SafeDocs: an approach to secure parsing and information interchange formats
2022-02-08Research talk: Privacy in machine learning research at Microsoft
2022-02-08Research talk: Towards bridging between legal and technical approaches to data protection



Tags:
Causal Machine Learning
human-like machine intelligence
computer science
causal machine learning technologies
microsoft research summit