\( S_{1}: \) If \( n \) is a positive integer then \[ \begin{array}{l} \int_{0}^{n \pi}\left|\fr...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=c_k8_sQ3xx4
\( S_{1}: \) If \( n \) is a positive integer then
\[
\begin{array}{l}
\int_{0}^{n \pi}\left|\frac{\sin x}{x}\right| d x \geq \frac{2}{\pi}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots . .+\frac{1}{n}\right) . \\
S_{2}: \frac{\sin x}{x} \geq \frac{2}{\pi} \text { on }(0, \pi / 2)
\end{array}
\]
(a) Both \( S_{1} \) and \( S_{2} \) are true (b) Both \( S_{1} \) and \( S_{2} \) are false
(c) \( S_{1} \) is true and \( S_{2} \) is false (d) \( S_{1} \) is false and \( S_{2} \) is true
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live