If \( I_{n}=\int_{-n}^{n}\left(\{x+1\}\left\{x^{2}+2\right\}+\left\{x^{2}+3\right\}\left\{x^{3}+...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=nqC6izrI5Ss
If \( I_{n}=\int_{-n}^{n}\left(\{x+1\}\left\{x^{2}+2\right\}+\left\{x^{2}+3\right\}\left\{x^{3}+4\right\}\right) d x \), (where, \{\} denotes the fractional part), then \( I_{1} \) is equal to
\( (a)-\frac{1}{3} \)
(b) \( -\frac{2}{3} \)
(c) \( \frac{1}{3} \)
(d) \( \frac{2}{3} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live