If \( a, b \) can \( c \) are real numbers, then the value of \( \lim _{t \rightarrow 0} \ln \le...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=--QtHZ6xjhg
If \( a, b \) can \( c \) are real numbers, then the value of \( \lim _{t \rightarrow 0} \ln \left(\frac{1}{t} \int_{0}^{t}(1+a \sin b x)^{c / x} d x\right) \) equal
(a) \( a b c \)
(b) \( a b / c \)
(c) \( b c / a \)
(d) \( c a / b \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live