Solve the following equation for the vector \( \vec{p} ; \vec{p} \times \vec{a} \) \( +(\vec{p} ... VIDEO
Solve the following equation for the vector \( \vec{p} ; \vec{p} \times \vec{a} \) \( +(\vec{p} \cdot \vec{b}) \vec{c}=\vec{b} \times \vec{c} \) where \( \vec{a}, \vec{b}, \vec{c} \) are non-zero non-coplanar vectors and \( \vec{a} \) is neither perpendicular to \( \vec{b} \) nor to \( \vec{c} \), hence show that \( \left(\vec{p} \times \vec{a}+\frac{[\vec{a} \vec{b} \vec{c}]}{\vec{a} \cdot \vec{c}} \vec{c}\right) \) is perpendicular to \( \vec{b}-\vec{c} \).
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2023-06-09 Let \( \vec{a} \) and \( \vec{b} \) be two vectors such that \( |\vec{a}+\vec{b}|^{2}=|\vec{a}|^... 2023-06-09 Find
(i) A vector of magnitude \( \sqrt{6} \) perpendicular to the plane \( A B C \)
(ii) Area o... 2023-06-09 In a quadrilateral \( A B C D \) it is given that \( A B \| C D \) and the diagonals \( A C \) a... 2023-06-09 Show that the p.v. of circumcentre of a tetrahedron \( O A B C \) is (where \( O \) is the ori... 2023-06-09 Let \( \vec{a}=3 \hat{i}+\hat{j} \) and \( \vec{b}=\hat{i}+2 \hat{j}+\hat{k} \). Let \( \vec{c} ... 2023-06-09 If the vectors \( \vec{b}, \vec{c}, \vec{d} \) are not coplanar, then prove that the vector \( (... 2023-06-09 Let \( \left(\begin{array}{lll}\left(a_{1}-a\right)^{2} & \left(a_{1}-b\right)^{2} & \left(a_{1}... 2023-06-09 Consider the non-zero vectors \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{d} \) such that no thr... 2023-06-09 Let \( \vec{a}=\sqrt{3} \hat{i}-\hat{j} \) and \( \vec{b}=\frac{1}{2} \hat{i}+\frac{\sqrt{3}}{2}... 2023-06-09 Given four non-zero vectors \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{d} \). The vectors \( \v... 2023-06-09 Solve the following equation for the vector \( \vec{p} ; \vec{p} \times \vec{a} \) \( +(\vec{p} ... 2023-06-09 \( O \) is the origin of vectors and \( A \) is a fixed point on the circle of radius \( a \) ... 2023-06-09 Find the scalars \( \alpha \) and \( \beta \) if \( \vec{a} \times(\vec{b} \times \vec{c})+(\vec... 2023-06-09 Consider a plane II: \( \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})=5 \), a line \( L_{1} \) : \( \... 2023-06-09 \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{d} \) are the position vectors of the points \( A \e... 2023-06-09 Let \( \vec{a}, \vec{b} \) and \( \vec{c} \) be non-coplanar unit vectors, equally inclined to o... 2023-06-09 Prove that:
\[
(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) ... 2023-06-09 Given three points on the \( x y \) plane on \( O(0,0), A(1,0) \) and \( B(-1,0) \). Point \( P ... 2023-06-09 \( \begin{array}{ll}\text { Comprehension } & : \text { The points } A, B \text { and } C \text ... 2023-06-09 In a \( \triangle A B C \), points \( E \) and \( F \) divide sides \( A C \) and \( A B \) resp... 2023-06-09 Suppose the three vectors \( \vec{a}, b, \vec{c} \) on a plane satisfy the condition that \( |\v...