\( \sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j} \) is equal to (a) \( 2^{2...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=wkVXHcOrz2k
\( \sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j} \) is equal to
(a) \( 2^{2 n}-{ }^{2 n} C_{n} \)
(b) \( 2^{2 n-1}-{ }^{2 n-1} C_{n-1} \)
(c) \( 2^{n}-\frac{1}{2}{ }^{2 n} C_{n} \)
(d) \( 2^{n-1}+{ }^{2 n-1} C_{n} \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live