The length of the tangent drawn from any point on the circle \( x^{...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=0_dAh_Dplss
The length of the tangent drawn from any point on the circle \( x^{2}+y^{2}+2 g x+2 f y+p=0 \) to the circle
\( \mathrm{P} \) \( x^{2}+y^{2}+2 g x+2 f y+q=0 \) is:
W
(A) \( \sqrt{q-p} \)
(B) \( \sqrt{p-q} \)
(C) \( \sqrt{q+p} \)
(D) \( \sqrt{2 q+p} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw