The linear velocity of a rotating body is given by \( \mathrm{P} \)...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=GIL2dv3GG-o
The linear velocity of a rotating body is given by
\( \mathrm{P} \) \( \vec{v}=\vec{\omega} \times \vec{r} \), where \( \vec{\omega} \) is the angular velocity and \( \vec{r} \) is
W the radius vector. The angular velocity of a body is \( \vec{\omega}=\hat{i}-2 \hat{j}+2 \hat{k} \) and the radius vector \( \vec{r}=4 \hat{j}-3 \hat{k} \), then \( |\vec{v}| \) is
(A) \( \sqrt{29} \) units
(B) \( \sqrt{31} \) units
(C) \( \sqrt{37} \) units
(D) \( \sqrt{41} \) units
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw