There are four Vernier scales, whose specifications are given in column-I and the least count is given in Column-II.
Match the Columns-I and II with correct specification and corresponding least count ( \( \mathrm{s} \) = value of main scale division, \( \mathrm{n}= \) number of marks on Vernier). Assume ( \( \mathrm{n}-1) \) main scale divisions are equal to \( \mathrm{n} \) Vernier divisions.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline A. & \( \mathrm{s}=1 \mathrm{~mm}, \mathrm{n}=10 \) & p. & \( 0.05 \mathrm{~mm} \) \\
\hline B. & \( \mathrm{s}=0.5 \mathrm{~mm}, \mathrm{n}=10 \) & q. & \( 0.01 \mathrm{~mm} \) \\
\hline C. & \( \mathrm{s}=0.5 \mathrm{~mm}, \mathrm{n}=20 \) & r. & \( 0.1 \mathrm{~mm} \) \\
\hline D. & \( \mathrm{s}=1 \mathrm{~mm}, \mathrm{n}=100 \) & s. & \( 0.025 \mathrm{~mm} \) \\
\hline
\end{tabular}
(1) A-(q); B-(r); C-(p); D-(s)
(2) \( \mathrm{A}-(\mathrm{r}) ; \mathrm{B}-(\mathrm{p}) ; \mathrm{C}-(\mathrm{s}) ; \mathrm{D}-(\mathrm{q}) \)
(3) A-(p); B-(q); C-(r); D-(s)
(4) None of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live