Two blocks \( A \) and \( B \) of mass \( m \) and \( 2 m \) respectively are connected by a mas....
Two blocks \( A \) and \( B \) of mass \( m \) and \( 2 m \) respectively are connected by a massless spring of spring constant \( \mathrm{k} \). This system lies over a smooth horizontal surface. At \( t=0 \), the block \( A \) has velocity \( u \) towards right as shown while the speed of block \( B \) is zero, and the length of spring is equal to its natural length at that instant.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ Column-I } & \multicolumn{2}{|r|}{ Column-II } \\
\hline (A) & \begin{tabular}{l}
The velocity of \\
block \( A \)
\end{tabular} & (p) & can never be zero \\
\hline (B) & \begin{tabular}{l}
The velocity of \\
block \( B \)
\end{tabular} & (q) & \begin{tabular}{l}
may be zero at \\
certain instant of \\
time
\end{tabular} \\
\hline (C) & \begin{tabular}{l}
The kinetic \\
energy of \\
system of two \\
blocks
\end{tabular} & (r) & \begin{tabular}{l}
is minimum at \\
maximum \\
compression of \\
spring
\end{tabular} \\
\hline (D) & \begin{tabular}{l}
The potential \\
energy of \\
spring
\end{tabular} & (s) & \begin{tabular}{l}
is maximum at \\
maximum \\
compression of \\
spring
\end{tabular} \\
\hline
\end{tabular}
(1) \( \mathrm{A} \rightarrow \mathrm{q} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{p}, \mathrm{r} ; \mathrm{D} \rightarrow \mathrm{q}, \mathrm{s} \)
(2) \( \mathrm{A} \rightarrow \mathrm{q}, \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{p}, \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{q}, \mathrm{s} \)
(3) \( \mathrm{A} \rightarrow \mathrm{q} ; \mathrm{B} \rightarrow \mathrm{q} ; \mathrm{C} \rightarrow \mathrm{q}, \mathrm{p} ; \mathrm{D} \rightarrow \mathrm{q}, \mathrm{r} \)
(4) None of these
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live