Two identical thin rings, each of radius \( \mathrm{R} \) meter are...
Two identical thin rings, each of radius \( \mathrm{R} \) meter are coaxially placed at distance \( \mathrm{R} \) meter apart. If \( \mathrm{Q}_{1} \) and \( \mathrm{Q}_{2} \) coulomb are respectively the charges uniformly spread on the two rings, the minimum work
\( \mathrm{P} \) done in moving a charge \( q \) from the centre of one ring to that of the other is
(A) zero
(B) \( q\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right)(\sqrt{2}-1) /\left(\sqrt{2} \cdot 4 \pi \varepsilon_{0} \mathrm{R}\right) \)
(C) \( \mathrm{q} \sqrt{2}\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right) / 4 \pi \varepsilon_{0} \mathrm{R} \)
(D) \( q\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right)(\sqrt{2}+1) /\left(\sqrt{2} .4 \pi \varepsilon_{0} \mathrm{R}\right) \)
๐ฒPW App Link - https://bit.ly/YTAI_PWAP
๐PW Website - https://www.pw.live