Assuming ideal behaviour, the magnitude of \(\log \mathrm{K}\) for the following reaction at \(2....
Assuming ideal behaviour, the magnitude of \(\log \mathrm{K}\) for the following reaction at \(25^{\circ} \mathrm{C}\) is \(\mathrm{x} \times 10^{-1}\).The value of \(x\) is (integer answer)\[3 \mathrm{HC} \equiv \mathrm{CH}(\mathrm{g}) \rightleftharpoons \mathrm{C}_6 \mathrm{H}_6(\mathrm{l})\]\[\begin{aligned}& {\left[\text { Given: } \Delta_{\mathrm{f}} \mathrm{G}^{\circ}(\mathrm{HC} \equiv \mathrm{CH})=-2.04 \times 10^5 \mathrm{~J} \mathrm{~mol}^{-1} ; \Delta_{\mathrm{f}} \mathrm{G}^{\circ}\left(\mathrm{C}_6 \mathrm{H}_6\right)\right.} \\& =-1.24 \times 10^5 \mathrm{~J} \mathrm{~mol}^{-1}: \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \text { ] }\end{aligned}\] π²PW App Link - https://bit.ly/YTAI_PWAP πPW Website - https://www.pw.live