One Model For All The Tasks - BLIP (Author Interview)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=Z3knUzwuIgo



Duration: 48:34
4,160 views
107


#blip #interview #salesforce

Paper Review Video: https://youtu.be/X2k7n4FuI7c
Sponsor: Assembly AI
https://www.assemblyai.com/?utm_source=youtube&utm_medium=social&utm_campaign=yannic2

This is an interview with Junnan Li and Dongxu Li, authors of BLIP and members of Salesforce research.
Cross-modal pre-training has been all the rage lately in deep learning, especially training vision and language models together. However, there are a number of issues, such as low quality datasets that limit the performance of any model trained on it, and also the fact that pure contrastive pre-training cannot be easily fine-tuned for most downstream tasks. BLIP unifies different tasks and objectives in a single pre-training run and achieves a much more versatile model, which the paper immediately uses to create, filter, clean and thus bootstrap its own dataset to improve performance even more!

OUTLINE:
0:00 - Intro
0:40 - Sponsor: Assembly AI
1:30 - Start of Interview
2:30 - What's the pitch?
4:40 - How did data bootstrapping come into the project?
7:10 - How big of a problem is data quality?
11:10 - Are the captioning & filtering models biased towards COCO data?
14:40 - Could the data bootstrapping be done multiple times?
16:20 - What was the evolution of the BLIP architecture?
21:15 - Are there additional benefits to adding language modelling?
23:50 - Can we imagine a modular future for pre-training?
29:45 - Diving into the experimental results
42:40 - What did and did not work out during the research?
45:00 - How is research life at Salesforce?
46:45 - Where do we go from here?

Paper: https://arxiv.org/abs/2201.12086
Code: https://github.com/salesforce/BLIP
Demo: https://huggingface.co/spaces/Salesforce/BLIP

Abstract:
Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to video-language tasks in a zero-shot manner. Code, models, and datasets are released at this https URL.

Authors: Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi

Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://ykilcher.com/discord
BitChute: https://www.bitchute.com/channel/yannic-kilcher
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2022-04-10[ML News] Google's 540B PaLM Language Model & OpenAI's DALL-E 2 Text-to-Image Revolution
2022-04-06DALL-E 2 by OpenAI is out! Live Reaction
2022-04-04The Weird and Wonderful World of AI Art (w/ Author Jack Morris)
2022-04-02Author Interview - Improving Intrinsic Exploration with Language Abstractions
2022-04-01Improving Intrinsic Exploration with Language Abstractions (Machine Learning Paper Explained)
2022-03-30[ML News] GPT-3 learns to edit | Google Pathways | Make-A-Scene | CLIP meets GamePhysics | DouBlind
2022-03-29Author Interview - Memory-assisted prompt editing to improve GPT-3 after deployment
2022-03-28Memory-assisted prompt editing to improve GPT-3 after deployment (Machine Learning Paper Explained)
2022-03-26Author Interview - Typical Decoding for Natural Language Generation
2022-03-25Typical Decoding for Natural Language Generation (Get more human-like outputs from language models!)
2022-03-24One Model For All The Tasks - BLIP (Author Interview)
2022-03-23BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding&Generation
2022-03-21[ML News] AI Threatens Biological Arms Race
2022-03-20Active Dendrites avoid catastrophic forgetting - Interview with the Authors
2022-03-18Avoiding Catastrophe: Active Dendrites Enable Multi-Task Learning in Dynamic Environments (Review)
2022-03-14Author Interview - VOS: Learning What You Don't Know by Virtual Outlier Synthesis
2022-03-13VOS: Learning What You Don't Know by Virtual Outlier Synthesis (Paper Explained)
2022-03-08Spurious normativity enhances learning of compliance and enforcement behavior in artificial agents
2022-03-06First Author Interview: AI & formal math (Formal Mathematics Statement Curriculum Learning)
2022-03-05OpenAI tackles Math - Formal Mathematics Statement Curriculum Learning (Paper Explained)
2022-03-04[ML News] DeepMind controls fusion | Yann LeCun's JEPA architecture | US: AI can't copyright its art