यदि \( C_{r}={ }^{n} C_{r} \), तब ब्रेणी \[ \frac{2\left(\frac{n}{2}\right) !\left(\frac{n}{2}\r...
Channel:
Subscribers:
458,000
Published on ● Video Link: https://www.youtube.com/watch?v=oqurvp3_Jis
यदि \( C_{r}={ }^{n} C_{r} \), तब ब्रेणी
\[
\frac{2\left(\frac{n}{2}\right) !\left(\frac{n}{2}\right)}{n !} \cdot\left[C_{0}^{2}-2 C_{1}^{2}+3 C_{2}^{2}-\ldots+(-1)^{n}(n+1) C_{n}^{2}\right]
\]
जहाँ \( n \) एक सम धनाइमक पूर्णाक है, का योग है
(A) 0
(B) \( (-1)^{n / 2}(n+1) \)
(C) \( (-1)^{n}(n+2) \)
(D) \( (-1)^{n / 2}(n+2) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live