Comparative cognition | Wikipedia audio article
This is an audio version of the Wikipedia Article:
https://en.wikipedia.org/wiki/Comparative_cognition
00:01:40 See also
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
https://assistant.google.com/services/invoke/uid/0000001a130b3f91
Other Wikipedia audio articles at:
https://www.youtube.com/results?search_query=wikipedia+tts
Upload your own Wikipedia articles through:
https://github.com/nodef/wikipedia-tts
Speaking Rate: 0.8596113585237507
Voice name: en-US-Wavenet-F
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
Comparative cognition is the comparative study of the mechanisms and origins of cognition in various species, and is sometimes seen as more general than, or similar to, comparative psychology.
From a biological point of view, work is being done on the brains of fruit flies that should yield techniques precise enough to allow an understanding of the workings of the human brain on a scale appreciative of individual groups of neurons rather than the more regional scale previously used. Similarly, gene activity in the human brain is better understood through examination of the brains of mice by the Seattle-based Allen Institute for Brain Science (see link below), yielding the freely available Allen Brain Atlas. This type of study is related to comparative cognition, but better classified as one of comparative genomics. Increasing emphasis in psychology and ethology on the biological aspects of perception and behavior is bridging the gap between genomics and behavioral analysis.
In order for scientists to better understand cognitive function across a broad range of species they can systematically compare cognitive abilities between closely and distantly related species Through this process they can determine what kinds of selection pressure has led to different cognitive abilities across a broad range of animals. For example, it has been hypothesized that there is convergent evolution of the higher cognitive functions of corvids and apes, possibly due to both being omnivorous, visual animals that live in social groups.