Comprehension : Consider the two equations in \( x \) (i) \( \sin \left(\frac{\cos ^{-1} x}{y}\r...

Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=N1iIGqvzddg



Duration: 7:11
0 views
0


Comprehension
: Consider the two equations in \( x \)
(i) \( \sin \left(\frac{\cos ^{-1} x}{y}\right)=1 \)
(ii) \( \cos \left(\frac{\sin ^{-1} x}{y}\right)=0 \)
The sets \( X_{1}, X_{2} \in[-1,1] ; Y_{1}, Y_{2} \in I-\{0\} \) are such that
\( X_{1} \) : the solution set of equation (i)
\( X_{2} \) : the solution set of equation (ii)
\( Y_{1} \) : the set of all integral values of \( y \) for which equation
(i) possess a solution
\( Y_{2} \) : the set of all integral values of \( y \) for which equation
(ii) possess a solution
Let \( C_{1} \) be relation defined by \( x C_{1} y \) for \( x \in X_{1}, y \in Y_{1} \) and \( (x, y) \) satisfy (i).

Let \( C_{2} \) be relation defined by \( x C_{2} y \) for \( x \in X_{2}, y \in Y_{2} \) and \( (x, y) \) satisfy (ii).

On the basis of above information, answer the following questions:
\( C_{1}: X_{1} \rightarrow Y_{1} \) is a function which is
(a) One-one
(b) Many-one
(c) Onto
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-06-08Consider two geometric progressions \( a_{1}, a_{2}, a_{3}, \ldots, a_{n} \& b_{1} \), \( b_{2},...
2023-06-08\[ \begin{array}{l} \text { Comprehension } \\ \text { trigonometric functions be defined } \qua...
2023-06-08Match the column: (a) (A) \( \rightarrow \mathrm{p} \); (B) \( \rightarrow \mathrm{r} \); (C) \(...
2023-06-08Comprehension (i) \( \sin \left(\frac{\cos ^{-1} x}{y}\right)=1 \) : Consider the two equations ...
2023-06-08\[ \begin{array}{l} \text { Comprehension } \\ \text { trigonometric functions be defined } \qua...
2023-06-08\( \begin{array}{l}\tan ^{-1}\left[\frac{3 \sin 2 \alpha}{5+3 \cos 2 \alpha}\right]+\tan ^{-1}\l...
2023-06-08The number of pair solution \( (x, y) \) of the equation \( 1+x^{2}+ \) \( 2 x \sin \left(\cos ^...
2023-06-08\[ \begin{array}{l} \text { Comprehension } \\ \text { trigonometric functions be defined } \qua...
2023-06-08Comprehension : We know Inverse trigonometric function have defined domain \( \& \) range \( \&[...
2023-06-08Consider, \( f(x)=\tan ^{-1}\left(\frac{2}{x}\right), g(x)=\sin ^{-1}\left(\frac{2}{\sqrt{4+x^{2...
2023-06-08Comprehension : Consider the two equations in \( x \) (i) \( \sin \left(\frac{\cos ^{-1} x}{y}\r...
2023-06-08Comprehension (i) \( \sin \left(\frac{\cos ^{-1} x}{y}\right)=1 \) : Consider the two equations ...
2023-06-08If the domain of \( f(x)=\frac{1}{\pi} \cos ^{-1}\left[\log _{3}\left(\frac{x^{2}}{3}\right)\rig...
2023-06-08Comprehension \( \quad: \) We know Inverse trigonometric function have defined domain \& range \...
2023-06-08Comprehension : We know Inverse trigonometric function have defined domain \( \& \) range \( \&[...
2023-06-08If \( \tan ^{-1}\left(\sin ^{2} \theta+2 \sin \theta+2\right)+\cot ^{-1}\left(4 \sec ^{2} \phi+1...
2023-06-08The solution(s) of the equation \( \cos ^{-1} x=\tan ^{-1} x \) satisfy (a) \( x^{2}=\frac{\sqrt...
2023-06-08\[ \sin ^{-1}\left(\frac{3 \sin 2 \theta}{5+4 \cos 2 \theta}\right)= \] (a) \( \sin ^{-1}\left(\...
2023-06-08Let \( f: R \rightarrow R \) defined by \( f(x)=\cos ^{-1}(-\{-x\}) \), where \( \{\mathrm{x}\} ...
2023-06-08\( S=3 \sum_{n=1}^{\infty}\left\{\frac{1}{\pi} \sum_{K=1}^{\infty} \cot ^{-1}\left(1+2 \sqrt{\su...
2023-06-08Number of integers in solution set of \( \left[\sin ^{-1} x\right]\left[\cos ^{-1} x\right] \), ...