David Reutter: Biunitary constructions in quantum information

Subscribers:
345,000
Published on ● Video Link: https://www.youtube.com/watch?v=_nVsClvU0lY



Duration: 33:29
215 views
2


We present an infinite number of construction schemes involving unitary error bases, Hadamard matrices, quantum Latin squares and controlled families, many of which have not previously been described. Our results rely on biunitary connections, algebraic objects which play a central role in the theory of planar algebras. They have an attractive graphical calculus which allows simple correctness proofs for the constructions we present. We apply these techniques to construct a unitary error basis that cannot be built using any previously known method.




Other Videos By Microsoft Research


2017-01-31Anand Natarajan: Limitations of semidefinite programs for separable states and entangled games
2017-01-31A parallel repetition theorem for all entangled games
2017-01-31Guillaume Dauphinais: Fault-tolerant error correction for non-abelian anyons
2017-01-31Dominic Williamson: Anyons and matrix product operator algebras
2017-01-31Jonathan Oppenheim: From quantum thermodynamical identities to a second law equality
2017-01-31Operator scaling and applications
2017-01-31Xin Wang: Asymptotic entanglement manipulation under PPT operations: new SDP bounds&irreversibility
2017-01-31Srinivasan Arunachalam: Optimal quantum sample complexity of learning algorithms
2017-01-311. Catalytic Decoupling 2. Deconstruction and conditional erasure of quantum correlations
2017-01-31A complete characterization of unitary quantum space
2017-01-31David Reutter: Biunitary constructions in quantum information
2017-01-31Fernando Brandao: Quantum speed-ups for semidefinite programming
2017-01-31Joseph M. Renes: Belief propagation decoding of quantum channels by passing quantum messages
2017-01-31Anupam Prakash: Quantum recommendation systems
2017-01-31Garnet Chan: Simulating quantum systems on classical computers
2017-01-31Rigetti Computing Software Demo: Forest
2017-01-31Frank Verstraete: The entanglement of distillation for gauge theories
2017-01-31Aram Harrow: Sequential measurements, disturbance and property testing
2017-01-31Carlo Sparaciari: A resource theory for work and heat
2017-01-31Mark Howard: Application of a resource theory for magic states to fault-tolerant quantum computing
2017-01-31John Preskill: Quantum information and spacetime (II)



Tags:
microsoft research