Xin Wang: Asymptotic entanglement manipulation under PPT operations: new SDP bounds&irreversibility

Subscribers:
351,000
Published on ● Video Link: https://www.youtube.com/watch?v=EufpsdJxVV0



Duration: 30:10
215 views
5


We study various aspects of asymptotic entanglement manipulation of general bipartite states under operations that completely preserve positivity of partial transpose (PPT). Our key findings include: i) nonadditivity of Rains' bound for a class of two-qubit states; and ii) two additive SDP lower bounds to the Rains' bound and relative entropy of entanglement, respectively. These findings enable us to better evaluate the distillable entanglement and entanglement cost. As applications, we show that for any rank-two mixed state supporting on the 3-level anti-symmetric subspace, both the Rains' bound and its regularization are strictly less than the asymptotic relative entropy of entanglement. That also implies the irreversibility of asymptotic entanglement manipulation under PPT operations, one of the major open problems in quantum information theory. We further present an SDP-computable sufficient condition for the irreversibility under PPT operations.




Other Videos By Microsoft Research


2017-01-31Optimal Hamiltonian simulation by quantum signal processing
2017-01-31Shalev Ben-David: Sculpting quantum speedups
2017-01-31David Sutter: Multivariate trace inequalities
2017-01-31Mischa Woods: Applications of recoverability in quantum information
2017-01-31Anand Natarajan: Limitations of semidefinite programs for separable states and entangled games
2017-01-31A parallel repetition theorem for all entangled games
2017-01-31Guillaume Dauphinais: Fault-tolerant error correction for non-abelian anyons
2017-01-31Dominic Williamson: Anyons and matrix product operator algebras
2017-01-31Jonathan Oppenheim: From quantum thermodynamical identities to a second law equality
2017-01-31Operator scaling and applications
2017-01-31Xin Wang: Asymptotic entanglement manipulation under PPT operations: new SDP bounds&irreversibility
2017-01-31Srinivasan Arunachalam: Optimal quantum sample complexity of learning algorithms
2017-01-311. Catalytic Decoupling 2. Deconstruction and conditional erasure of quantum correlations
2017-01-31A complete characterization of unitary quantum space
2017-01-31David Reutter: Biunitary constructions in quantum information
2017-01-31Fernando Brandao: Quantum speed-ups for semidefinite programming
2017-01-31Joseph M. Renes: Belief propagation decoding of quantum channels by passing quantum messages
2017-01-31Anupam Prakash: Quantum recommendation systems
2017-01-31Garnet Chan: Simulating quantum systems on classical computers
2017-01-31Rigetti Computing Software Demo: Forest
2017-01-31Frank Verstraete: The entanglement of distillation for gauge theories



Tags:
microsoft research