Garnet Chan: Simulating quantum systems on classical computers

Subscribers:
345,000
Published on ● Video Link: https://www.youtube.com/watch?v=yYwUQe2Aorw



Duration: 1:04:33
1,539 views
24


I will describe the landscape of classical simulations of the quantum mechanics of materials, chemistry, and biology and the role that quantum information theory has played. I will showcase the current state-of-the-art and highlight challenges, with some speculation as to where quantum computing may be important.




Other Videos By Microsoft Research


2017-01-31Dominic Williamson: Anyons and matrix product operator algebras
2017-01-31Jonathan Oppenheim: From quantum thermodynamical identities to a second law equality
2017-01-31Operator scaling and applications
2017-01-31Xin Wang: Asymptotic entanglement manipulation under PPT operations: new SDP bounds&irreversibility
2017-01-31Srinivasan Arunachalam: Optimal quantum sample complexity of learning algorithms
2017-01-311. Catalytic Decoupling 2. Deconstruction and conditional erasure of quantum correlations
2017-01-31A complete characterization of unitary quantum space
2017-01-31David Reutter: Biunitary constructions in quantum information
2017-01-31Fernando Brandao: Quantum speed-ups for semidefinite programming
2017-01-31Joseph M. Renes: Belief propagation decoding of quantum channels by passing quantum messages
2017-01-31Garnet Chan: Simulating quantum systems on classical computers
2017-01-31Rigetti Computing Software Demo: Forest
2017-01-31Frank Verstraete: The entanglement of distillation for gauge theories
2017-01-31Aram Harrow: Sequential measurements, disturbance and property testing
2017-01-31Carlo Sparaciari: A resource theory for work and heat
2017-01-31Mark Howard: Application of a resource theory for magic states to fault-tolerant quantum computing
2017-01-31John Preskill: Quantum information and spacetime (II)
2017-01-31Anurag Anshu: Separations in communication complexity using cheat sheets and information complexity
2017-01-31Florian Speelman: Quantum homomorphic encryption for polynomial-sized circuits (Best Student Paper)
2017-01-31John Preskill: Quantum information and spacetime (I)
2017-01-31Earl Campbell: Unifying gate-synthesis and magic state distillation



Tags:
microsoft research