Anand Natarajan: Limitations of semidefinite programs for separable states and entangled games

Subscribers:
351,000
Published on ● Video Link: https://www.youtube.com/watch?v=CfCtanzg38w



Duration: 35:20
281 views
2


"We introduce a new method for using reductions to construct integrality gaps for
semidefinite programs (SDPs).
These imply new limitations on the sum-of-squares (SoS) hierarchy in approximating two particularly important sets in quantum information theory, where previously no
$\omega(1)$-round integrality gaps were known:

-The set of separable (i.e. unentangled) states, or equivalently, the $2 \ra 4$ norm of a matrix.
-The set of quantum correlations; i.e. conditional probability distributions achievable with local measurements on a shared entangled state.

Integrality gaps for the $2\ra 4$ norm had previously been sought due
to its connection to Small-Set Expansion (SSE) and Unique Games (UG).

In both cases no-go theorems were previously known based on computational assumptions such as the Exponential Time Hypothesis (ETH) which asserts that 3-SAT requires exponential time to solve. Our unconditional results achieve the same parameters as all of these previous results (for separable states) or as some of the previous results (for quantum correlations). In some cases we can make use of the framework of Lee-Raghavendra-Steurer (LRS) to establish integrality gaps for any SDP, not only the SoS hierarchy. Our hardness result on separable states also yields a dimension lower bound of approximate disentanglers, answering a question of Aaronson et al.

These results can be viewed as limitations on the monogamy principle, the PPT test, the ability of Tsirelson-type bounds to restrict quantum correlations, as well as the SDP hierarchies of Doherty-Parrilo-Spedalieri, Navascues-Pironio-Acin and Berta-Fawzi-Scholz. Indeed a wide range of past work in quantum information can be described as using an SDP on one of the above two problems and our results put broad limits on these lines of argument."




Other Videos By Microsoft Research


2017-01-31Anand Natarajan: Robust self-testing of many qubit states
2017-01-31Andras Gilyen: On preparing ground states of gapped Hamiltonians
2017-01-31David Gosset: Complexity of quantum impurity problems
2017-01-31Thomas Vidick: Rigorous RG algorithms and area laws for low energy eigenstates in 1D
2017-01-31Giulio Chiribella: Optimal compression for identically prepared qubit states
2017-01-31James Lee: Spectrahedral lifts and quantum learning
2017-01-31Optimal Hamiltonian simulation by quantum signal processing
2017-01-31Shalev Ben-David: Sculpting quantum speedups
2017-01-31David Sutter: Multivariate trace inequalities
2017-01-31Mischa Woods: Applications of recoverability in quantum information
2017-01-31Anand Natarajan: Limitations of semidefinite programs for separable states and entangled games
2017-01-31A parallel repetition theorem for all entangled games
2017-01-31Guillaume Dauphinais: Fault-tolerant error correction for non-abelian anyons
2017-01-31Dominic Williamson: Anyons and matrix product operator algebras
2017-01-31Jonathan Oppenheim: From quantum thermodynamical identities to a second law equality
2017-01-31Operator scaling and applications
2017-01-31Xin Wang: Asymptotic entanglement manipulation under PPT operations: new SDP bounds&irreversibility
2017-01-31Srinivasan Arunachalam: Optimal quantum sample complexity of learning algorithms
2017-01-311. Catalytic Decoupling 2. Deconstruction and conditional erasure of quantum correlations
2017-01-31A complete characterization of unitary quantum space
2017-01-31David Reutter: Biunitary constructions in quantum information



Tags:
microsoft research