Jonathan Oppenheim: From quantum thermodynamical identities to a second law equality

Subscribers:
351,000
Published on ● Video Link: https://www.youtube.com/watch?v=QfaMNUnEDGQ



Duration: 55:59
1,174 views
23


"We investigate the connection between recent results in quantum thermodynamics and fluctuation relations by adopting a fully quantum mechanical description of thermodynamics. By including a work system whose energy is allowed to fluctuate, we derive a set of equalities which all thermodynamical transitions have to satisfy. This extends the condition for maps to be Gibbs-preserving to the case of fluctuating work, providing a more general characterisation of maps commonly used in
We investigate the connection between recent results in quantum thermodynamics and fluctuation relations by adopting a fully quantum mechanical description of thermodynamics. By including a work system whose energy is allowed to fluctuate, we derive a set of equalities which all thermodynamical transitions have to satisfy. This extends the condition for maps to be Gibbs-preserving to the case of fluctuating work, providing a more general characterisation of maps commonly used in
the information theoretic approach to thermodynamics. For final states, block diagonal in the energy basis, this set of equalities are necessary and sufficient conditions for a thermodynamical state transition to be possible. The conditions serves as a parent equation which can be used to derive a number of results. These include writing the second law of thermodynamics as an equality featuring a fine-grained notion of the free energy. It also yields a generalisation of the Jarzynski fluctuation theorem which holds for arbitrary initial states, and under the most general manipulations allowed by the laws of quantum mechanics. Furthermore, we show that each of these relations can be seen as the quasi-classical limit of three fully quantum identities. This allows us to consider the free energy as an operator, and allows one to obtain more general and fully quantum fluctuation relations from the information theoretic approach to quantum thermodynamics."




Other Videos By Microsoft Research


2017-01-31Giulio Chiribella: Optimal compression for identically prepared qubit states
2017-01-31James Lee: Spectrahedral lifts and quantum learning
2017-01-31Optimal Hamiltonian simulation by quantum signal processing
2017-01-31Shalev Ben-David: Sculpting quantum speedups
2017-01-31David Sutter: Multivariate trace inequalities
2017-01-31Mischa Woods: Applications of recoverability in quantum information
2017-01-31Anand Natarajan: Limitations of semidefinite programs for separable states and entangled games
2017-01-31A parallel repetition theorem for all entangled games
2017-01-31Guillaume Dauphinais: Fault-tolerant error correction for non-abelian anyons
2017-01-31Dominic Williamson: Anyons and matrix product operator algebras
2017-01-31Jonathan Oppenheim: From quantum thermodynamical identities to a second law equality
2017-01-31Operator scaling and applications
2017-01-31Xin Wang: Asymptotic entanglement manipulation under PPT operations: new SDP bounds&irreversibility
2017-01-31Srinivasan Arunachalam: Optimal quantum sample complexity of learning algorithms
2017-01-311. Catalytic Decoupling 2. Deconstruction and conditional erasure of quantum correlations
2017-01-31A complete characterization of unitary quantum space
2017-01-31David Reutter: Biunitary constructions in quantum information
2017-01-31Fernando Brandao: Quantum speed-ups for semidefinite programming
2017-01-31Joseph M. Renes: Belief propagation decoding of quantum channels by passing quantum messages
2017-01-31Anupam Prakash: Quantum recommendation systems
2017-01-31Garnet Chan: Simulating quantum systems on classical computers



Tags:
microsoft research