For a solid sphere of radius \( R \) and total charge \( Q \), let the charge distribution be \(...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=6brJX2eB0i0
For a solid sphere of radius \( R \) and total charge \( Q \), let the charge distribution be \( \rho=\frac{Q r}{\pi R^{4}} \). Then, for a point \( P \) distant \( r_{1} \) from centre of sphere (math xmlns=http://www.w3.org/1998/Math/MathMLmsubmir/mimn1/mn/msubmo</momiR/mi/math) field is
(a) 0
(b) \( Q / 4 \pi \varepsilon_{0} r_{1}^{2} \)
(c) \( \frac{Q r_{1}^{2}}{3 \pi \varepsilon_{0} R^{4}} \)
(d) \( \frac{Q r_{1}^{2}}{4 \pi \varepsilon_{0} R^{4}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live