If a circle of constant radius \( 3 \mathrm{k} \) passes through the origin \( \mathrm{O} \) a...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=IuKNAesqD-E
If a circle of constant radius \( 3 \mathrm{k} \) passes through the origin \( \mathrm{O} \) and meets co-ordinate axes at \( \mathrm{A} \) and \( \mathrm{B} \)
P then the locus of the centroid of the triangle \( \mathrm{OAB} \) is -
(A) \( x^{2}+y^{2}=(2 k)^{2} \)
(B) \( x^{2}+y^{2}=(3 k)^{2} \)
(C) \( x^{2}+y^{2}=(4 k)^{2} \)
(D) \( x^{2}+y^{2}=(6 k)^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live