If \( A=\left[\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right] \) and \( a^{2}...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=e_gQWuirvOY
If \( A=\left[\begin{array}{cc}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right] \) and \( a^{2}+b^{2}+c^{2}+d^{2}=1 \), then \( A^{-1} \) is equal to
(A) \( \left[\begin{array}{cc}a-i b & -c-i d \\ -c+i d & a-i b\end{array}\right] \)
(B) \( \left[\begin{array}{cc}a+i b & -c+i d \\ -c+i d & a-i b\end{array}\right] \)
(C) \( \left[\begin{array}{cc}a-i b & c-i d \\ -c-i d & a+i b\end{array}\right] \)
(D) None of these
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live