If \( y=m_{1} x+c_{1} \) and \( y=m_{2} x+c_{2}, m_{1} \neq m_{2} \...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=ejJyAMIw5TI
If \( y=m_{1} x+c_{1} \) and \( y=m_{2} x+c_{2}, m_{1} \neq m_{2} \) are two
\( \mathrm{P} \) common tangents of circle \( x^{2}+y^{2}=2 \) and parabola
W \( y^{2}=x \), then the value of \( 8\left|m_{1} m_{2}\right| \) is equal to:
(1) \( 3+4 \sqrt{2} \)
(2) \( -5+6 \sqrt{2} \)
(3) \( -4+3 \sqrt{2} \)
(4) \( 7+6 \sqrt{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw