In a \( \triangle A B C \), if \( a, b \) and \( c \) are in A.P., prove that \( \cos A \cdot \c...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=PuoVb52tEqs
In a \( \triangle A B C \), if \( a, b \) and \( c \) are in A.P., prove that \( \cos A \cdot \cot \frac{A}{2}, \cos B . \cot \frac{B}{2} \), and \( \cos C . \cot \frac{C}{2} \) are in A.P.
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live