Let \( f(x) \) be a polynomial function of degree 2 \( \mathrm{P} \...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=lCq1-G-Qg8k
Let \( f(x) \) be a polynomial function of degree 2
\( \mathrm{P} \) satisfying
W
\[
\int \frac{f(x)}{x^{3}-1} d x=\ln \left|\frac{x^{2}+x+1}{x-1}\right|+\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+C \text {, }
\]
where \( C \) is indefinite integration constant.
The value of \( f(1) \) is equal to:
(1) 1
(2) 2
(3) -1
(4) -3
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw