\( \sum_{r=0}^{2 n} a_{r}(x-2)^{r}=\sum_{r=0}^{2 n} b_{r}(x-3)^{r} \) and \( a_{k}=1 \) for all ....
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=KuAe2ssfmQ0
\( \sum_{r=0}^{2 n} a_{r}(x-2)^{r}=\sum_{r=0}^{2 n} b_{r}(x-3)^{r} \) and \( a_{k}=1 \) for all \( k \geq n \),
\( \mathrm{P} \)
then
(1) \( b_{n}={ }^{2 n} C_{n} \)
(2) \( b_{n}={ }^{2 n+1} C_{n-1} \)
(3) \( b_{n}={ }^{2 n+1} C_{n+1} \)
(4) None of these
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live