Match the following columns:
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Column-I } ....
Match the following columns:
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline (A) & \begin{tabular}{c}
\( C_{0}+3 C_{1}+5 C_{2}+ \) \\
\( \ldots \ldots \ldots= \)
\end{tabular} & (P) & \( 2^{n}-(n+2) \) \\
\hline (B) & \begin{tabular}{r}
\( { }^{n} C_{2}+{ }^{n} C_{3}+{ }^{n} C_{4}+\ldots+ \) \\
\( { }^{n} C_{n-1}= \)
\end{tabular} & (Q) & \( \frac{1}{(n+1)(n+2)} \) \\
\hline (C) & \( \frac{C_{0}}{2}-\frac{C_{1}}{3}+\frac{C_{2}}{4}-\frac{C_{3}}{5}+\ldots= \) & (R) & \( \frac{\lfloor 2 n-1}{\lfloor n-1\lfloor n-1} \) \\
\hline (D) & \( C_{1}^{2}+2 C_{2}^{2}+3 C_{3}^{2}+\ldots+n C_{n}^{2}= \) & (S) & \( (n+1) 2^{n} \) \\
\hline
\end{tabular}
(1) \( \mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{P} \)
(2) \( \mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S} \)
(3) \( \mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{S} \)
(4) \( \mathrm{A} \rightarrow \mathrm{S} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{R} \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
2024-01-23 | The value of \( \frac{2 n+1}{2 n-1}+3\left(\frac{2 n+1}{2 n-1}\right)^{2}+5\left(\frac{2 n+1}{2 .... |
2024-01-23 | Let \( \alpha \) and \( \beta \) be the roots of the quadratic equation
\( a x^{2}+b x+c=0 \) an.... |
2024-01-23 | \( a, b, c, d \) are in \( G P \) and are in ascending order such
that \( a+d=112 \) and \( b+c=.... |
2024-01-23 | If the reciprocals of the roots of the equation
\( 10 x^{3}-a x^{2}-54 x-27=0 \) are in AP, then.... |
2024-01-23 | The difference between the fourth and the first term of a GP is 52 and the sum of the first thre.... |
2024-01-23 | If \( S_{1}, S_{2}, S_{3}, \ldots \ldots ., S_{p} \) are the sums of first \( n \) terms of \( p.... |
2024-01-23 | If \( 5^{2} \cdot 5^{4} \cdot 5^{6} \cdots 5^{2 n}=(0.04)^{-28} \), then \( n \) is equal to.... |
2024-01-23 | If the sum of the roots of the quadratic equation
\( a x^{2}+b x+c=0 \) is equal to the sum of t.... |
2024-01-23 | The number of terms in an \( A P \) is even. The sum of the odd terms is 24 and the sum of the e.... |
2024-01-23 | The \( m^{\text {th }} \) term of an AP is \( a \) and its \( n^{\text {th }} \) term is \( b \).... |
2024-01-23 | Match the following columns:
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{2}{|c|}{ Column-I } .... |
2024-01-23 | The sum of the first \( n \) terms of two arithmetic series are in the ratio \( (7 n+1):(4 n+27).... |
2024-01-23 | If \( [x] \) denotes the greatest integer less than or equal to
\( x \), then \( \left[(6 \sqrt{.... |
2024-01-23 | If \( \mathrm{m} \) be the number of rational terms in the expansion
of \( \left(\sqrt{2}+3^{1 /.... |
2024-01-23 | Match the following columns:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ Column-I } .... |
2024-01-23 | If \( \sum_{r=0}^{n}\left(\frac{r+2}{r+1}\right)^{n} C_{r}=\left(\frac{2^{8}-1}{6}\right) \), fi.... |
2024-01-23 | \( \sum_{r=0}^{2 n} a_{r}(x-2)^{r}=\sum_{r=0}^{2 n} b_{r}(x-3)^{r} \) and \( a_{k}=1 \) for all .... |
2024-01-23 | Suppose when \( m \) is divided by \( n \), the quotient is \( q \) and the remainder is \( r \).... |
2024-01-23 | If the co-efficients of \( (2 r+4) \) th and \( (r-2) \) th terms in the expansion of \( (1+x)^{.... |
2024-01-23 | In the expansion of \( (x+y+z)^{25} \)..... |
2024-01-23 | In the expansion of \( \left(x^{3}+3.2^{-\log _{\sqrt{2}} \sqrt{x^{3}}}\right)^{11} \) :.... |