The Hardware Lottery (Paper Explained)

Subscribers:
293,000
Published on ● Video Link: https://www.youtube.com/watch?v=MQ89be_685o



Duration: 52:11
10,286 views
331


#ai #research #hardware

We like to think that ideas in research succeed because of their merit, but this story is likely incomplete. The term "hardware lottery" describes the fact that certain algorithmic ideas are successful because they happen to be suited well to the prevalent hardware, whereas other ideas, which would be equally viable, are left behind because no accelerators for them exists. This paper is part history, part opinion and gives lots of inputs to think about.

OUTLINE:
0:00 - Intro & Overview
1:15 - The Hardware Lottery
8:30 - Sections Overview
11:30 - Why ML researchers are disconnected from hardware
16:50 - Historic Examples of Hardware Lotteries
29:05 - Are we in a Hardware Lottery right now?
39:55 - GPT-3 as an Example
43:40 - Comparing Scaling Neural Networks to Human Brains
46:00 - The Way Forward
49:25 - Conclusion & Comments

Paper: https://arxiv.org/abs/2009.06489
Website: https://hardwarelottery.github.io/

Abstract:
Hardware, systems and algorithms research communities have historically had different incentive structures and fluctuating motivation to engage with each other explicitly. This historical treatment is odd given that hardware and software have frequently determined which research ideas succeed (and fail). This essay introduces the term hardware lottery to describe when a research idea wins because it is suited to the available software and hardware and not because the idea is superior to alternative research directions. Examples from early computer science history illustrate how hardware lotteries can delay research progress by casting successful ideas as failures. These lessons are particularly salient given the advent of domain specialized hardware which makes it increasingly costly to stray off of the beaten path of research ideas.

Authors: Sara Hooker

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn: https://www.linkedin.com/in/yannic-kilcher-488534136/

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2020-11-29Predictive Coding Approximates Backprop along Arbitrary Computation Graphs (Paper Explained)
2020-11-22Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)
2020-11-15[News] Soccer AI FAILS and mixes up ball and referee's bald head.
2020-11-10Underspecification Presents Challenges for Credibility in Modern Machine Learning (Paper Explained)
2020-11-02Language Models are Open Knowledge Graphs (Paper Explained)
2020-10-26Rethinking Attention with Performers (Paper Explained)
2020-10-17LambdaNetworks: Modeling long-range Interactions without Attention (Paper Explained)
2020-10-11Descending through a Crowded Valley -- Benchmarking Deep Learning Optimizers (Paper Explained)
2020-10-04An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained)
2020-10-03Training more effective learned optimizers, and using them to train themselves (Paper Explained)
2020-09-18The Hardware Lottery (Paper Explained)
2020-09-13Assessing Game Balance with AlphaZero: Exploring Alternative Rule Sets in Chess (Paper Explained)
2020-09-07Learning to summarize from human feedback (Paper Explained)
2020-09-02Self-classifying MNIST Digits (Paper Explained)
2020-08-28Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation (Paper Explained)
2020-08-26Radioactive data: tracing through training (Paper Explained)
2020-08-23Fast reinforcement learning with generalized policy updates (Paper Explained)
2020-08-20What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study (Paper Explained)
2020-08-18[Rant] REVIEWER #2: How Peer Review is FAILING in Machine Learning
2020-08-14REALM: Retrieval-Augmented Language Model Pre-Training (Paper Explained)
2020-08-12Meta-Learning through Hebbian Plasticity in Random Networks (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
hardware
gpus
tpus
gpu
tpu
convolutional neural networks
yann lecun
history
historic
ai winter
expert systems
babbage
google
accelerators
cuda
nvidia
flops
von neumann architecture
bottleneck
parallelize
research
funding
society
cost
competition
general purpose
fpga