Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=IaS72aHrJKE



Duration: 1:05:33
49,209 views
1,851


#ai #research #engineering

Numerical solvers for Partial Differential Equations are notoriously slow. They need to evolve their state by tiny steps in order to stay accurate, and they need to repeat this for each new problem. Neural Fourier Operators, the architecture proposed in this paper, can evolve a PDE in time by a single forward pass, and do so for an entire family of PDEs, as long as the training set covers them well. By performing crucial operations only in Fourier Space, this new architecture is also independent of the discretization or sampling of the underlying signal and has the potential to speed up many scientific applications.

OUTLINE:
0:00 - Intro & Overview
6:15 - Navier Stokes Problem Statement
11:00 - Formal Problem Definition
15:00 - Neural Operator
31:30 - Fourier Neural Operator
48:15 - Experimental Examples
50:35 - Code Walkthrough
1:01:00 - Summary & Conclusion

Paper: https://arxiv.org/abs/2010.08895
Blog: https://zongyi-li.github.io/blog/2020/fourier-pde/
Code: https://github.com/zongyi-li/fourier_neural_operator/blob/master/fourier_3d.py
MIT Technology Review: https://www.technologyreview.com/2020/10/30/1011435/ai-fourier-neural-network-cracks-navier-stokes-and-partial-differential-equations/

Abstract:
The classical development of neural networks has primarily focused on learning mappings between finite-dimensional Euclidean spaces. Recently, this has been generalized to neural operators that learn mappings between function spaces. For partial differential equations (PDEs), neural operators directly learn the mapping from any functional parametric dependence to the solution. Thus, they learn an entire family of PDEs, in contrast to classical methods which solve one instance of the equation. In this work, we formulate a new neural operator by parameterizing the integral kernel directly in Fourier space, allowing for an expressive and efficient architecture. We perform experiments on Burgers' equation, Darcy flow, and the Navier-Stokes equation (including the turbulent regime). Our Fourier neural operator shows state-of-the-art performance compared to existing neural network methodologies and it is up to three orders of magnitude faster compared to traditional PDE solvers.

Authors: Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn: https://www.linkedin.com/in/yannic-kilcher-488534136/

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2021-01-22Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
2021-01-17STOCHASTIC MEME DESCENT - Deep Learning Meme Review - Episode 2 (Part 2 of 2)
2021-01-12OpenAI CLIP: ConnectingText and Images (Paper Explained)
2021-01-06OpenAI DALL·E: Creating Images from Text (Blog Post Explained)
2020-12-26Extracting Training Data from Large Language Models (Paper Explained)
2020-12-24MEMES IS ALL YOU NEED - Deep Learning Meme Review - Episode 2 (Part 1 of 2)
2020-12-16ReBeL - Combining Deep Reinforcement Learning and Search for Imperfect-Information Games (Explained)
2020-12-132M All-In into $5 Pot! WWYD? Daniel Negreanu's No-Limit Hold'em Challenge! (Poker Hand Analysis)
2020-12-01DeepMind's AlphaFold 2 Explained! AI Breakthrough in Protein Folding! What we know (& what we don't)
2020-11-29Predictive Coding Approximates Backprop along Arbitrary Computation Graphs (Paper Explained)
2020-11-22Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)
2020-11-15[News] Soccer AI FAILS and mixes up ball and referee's bald head.
2020-11-10Underspecification Presents Challenges for Credibility in Modern Machine Learning (Paper Explained)
2020-11-02Language Models are Open Knowledge Graphs (Paper Explained)
2020-10-26Rethinking Attention with Performers (Paper Explained)
2020-10-17LambdaNetworks: Modeling long-range Interactions without Attention (Paper Explained)
2020-10-11Descending through a Crowded Valley -- Benchmarking Deep Learning Optimizers (Paper Explained)
2020-10-04An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained)
2020-10-03Training more effective learned optimizers, and using them to train themselves (Paper Explained)
2020-09-18The Hardware Lottery (Paper Explained)
2020-09-13Assessing Game Balance with AlphaZero: Exploring Alternative Rule Sets in Chess (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
berkeley
purdue
mc hammer
mchammer
mit
technology review
pde
partial differential equation
navier stokes
darcy flow
burgers
convolutions
fft
dfft
fourier transform
fourier neural operator
neural operator
fast fourier transform
fourier modes
flow
turbulent flow
fluid dynamics
residual
aerodynamics
wind tunnel
neural network
layers
numerical
discretization