LambdaNetworks: Modeling long-range Interactions without Attention (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=3qxJ2WD8p4w



Duration: 59:33
46,903 views
1,219


#ai #research #attention

Transformers, having already captured NLP, have recently started to take over the field of Computer Vision. So far, the size of images as input has been challenging, as the Transformers' Attention Mechanism's memory requirements grows quadratic in its input size. LambdaNetworks offer a way around this requirement and capture long-range interactions without the need to build expensive attention maps. They reach a new state-of-the-art in ImageNet and compare favorably to both Transformers and CNNs in terms of efficiency.

OUTLINE:
0:00 - Introduction & Overview
6:25 - Attention Mechanism Memory Requirements
9:30 - Lambda Layers vs Attention Layers
17:10 - How Lambda Layers Work
31:50 - Attention Re-Appears in Lambda Layers
40:20 - Positional Encodings
51:30 - Extensions and Experimental Comparisons
58:00 - Code

Paper: https://openreview.net/forum?id=xTJEN-ggl1b
Lucidrains' Code: https://github.com/lucidrains/lambda-networks

Abstract:
We present a general framework for capturing long-range interactions between an input and structured contextual information (e.g. a pixel surrounded by other pixels). Our method, called the lambda layer, captures such interactions by transforming available contexts into linear functions, termed lambdas, and applying these linear functions to each input separately. Lambda layers are versatile and may be implemented to model content and position-based interactions in global, local or masked contexts. As they bypass the need for expensive attention maps, lambda layers can routinely be applied to inputs of length in the thousands, en-abling their applications to long sequences or high-resolution images. The resulting neural network architectures, LambdaNetworks, are computationally efficient and simple to implement using direct calls to operations available in modern neural network libraries. Experiments on ImageNet classification and COCO object detection and instance segmentation demonstrate that LambdaNetworks significantly outperform their convolutional and attentional counterparts while being more computationally efficient. Finally, we introduce LambdaResNets, a family of LambdaNetworks, that considerably improve the speed-accuracy tradeoff of image classification models. LambdaResNets reach state-of-the-art accuracies on ImageNet while being ∼4.5x faster than the popular EfficientNets on modern machine learning accelerators.

Authors: Anonymous

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn: https://www.linkedin.com/in/yannic-kilcher-488534136/

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2020-12-24MEMES IS ALL YOU NEED - Deep Learning Meme Review - Episode 2 (Part 1 of 2)
2020-12-16ReBeL - Combining Deep Reinforcement Learning and Search for Imperfect-Information Games (Explained)
2020-12-132M All-In into $5 Pot! WWYD? Daniel Negreanu's No-Limit Hold'em Challenge! (Poker Hand Analysis)
2020-12-01DeepMind's AlphaFold 2 Explained! AI Breakthrough in Protein Folding! What we know (& what we don't)
2020-11-29Predictive Coding Approximates Backprop along Arbitrary Computation Graphs (Paper Explained)
2020-11-22Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)
2020-11-15[News] Soccer AI FAILS and mixes up ball and referee's bald head.
2020-11-10Underspecification Presents Challenges for Credibility in Modern Machine Learning (Paper Explained)
2020-11-02Language Models are Open Knowledge Graphs (Paper Explained)
2020-10-26Rethinking Attention with Performers (Paper Explained)
2020-10-17LambdaNetworks: Modeling long-range Interactions without Attention (Paper Explained)
2020-10-11Descending through a Crowded Valley -- Benchmarking Deep Learning Optimizers (Paper Explained)
2020-10-04An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained)
2020-10-03Training more effective learned optimizers, and using them to train themselves (Paper Explained)
2020-09-18The Hardware Lottery (Paper Explained)
2020-09-13Assessing Game Balance with AlphaZero: Exploring Alternative Rule Sets in Chess (Paper Explained)
2020-09-07Learning to summarize from human feedback (Paper Explained)
2020-09-02Self-classifying MNIST Digits (Paper Explained)
2020-08-28Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation (Paper Explained)
2020-08-26Radioactive data: tracing through training (Paper Explained)
2020-08-23Fast reinforcement learning with generalized policy updates (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
attention
attention mechanism
lambda
lambdaresnet
residual networks
local attention
quadratic
memory
transformer
transformers
keys
values
queries
architecture
input size
iclr
lambdanet
lambdanets
lambdaresnets
efficientnet
tradeoff
routing
linear function
functional programming