Language Models are Open Knowledge Graphs (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=NAJOZTNkhlI



Duration: 52:16
28,533 views
993


#ai #research #nlp

Knowledge Graphs are structured databases that capture real-world entities and their relations to each other. KGs are usually built by human experts, which costs considerable amounts of time and money. This paper hypothesizes that language models, which have increased their performance dramatically in the last few years, contain enough knowledge to use them to construct a knowledge graph from a given corpus, without any fine-tuning of the language model itself. The resulting system can uncover new, unknown relations and outperforms all baselines in automated KG construction, even trained ones!

OUTLINE:
0:00 - Intro & Overview
1:40 - TabNine Promotion
4:20 - Title Misnomer
6:45 - From Corpus To Knowledge Graph
13:40 - Paper Contributions
15:50 - Candidate Fact Finding Algorithm
25:50 - Causal Attention Confusion
31:25 - More Constraints
35:00 - Mapping Facts To Schemas
38:40 - Example Constructed Knowledge Graph
40:10 - Experimental Results
47:25 - Example Discovered Facts
50:40 - Conclusion & My Comments

Paper: https://arxiv.org/abs/2010.11967

Abstract:
This paper shows how to construct knowledge graphs (KGs) from pre-trained language models (e.g., BERT, GPT-2/3), without human supervision. Popular KGs (e.g, Wikidata, NELL) are built in either a supervised or semi-supervised manner, requiring humans to create knowledge. Recent deep language models automatically acquire knowledge from large-scale corpora via pre-training. The stored knowledge has enabled the language models to improve downstream NLP tasks, e.g., answering questions, and writing code and articles. In this paper, we propose an unsupervised method to cast the knowledge contained within language models into KGs. We show that KGs are constructed with a single forward pass of the pre-trained language models (without fine-tuning) over the corpora. We demonstrate the quality of the constructed KGs by comparing to two KGs (Wikidata, TAC KBP) created by humans. Our KGs also provide open factual knowledge that is new in the existing KGs. Our code and KGs will be made publicly available.

Authors: Chenguang Wang, Xiao Liu, Dawn Song

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn: https://www.linkedin.com/in/yannic-kilcher-488534136/

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2021-01-06OpenAI DALL·E: Creating Images from Text (Blog Post Explained)
2020-12-26Extracting Training Data from Large Language Models (Paper Explained)
2020-12-24MEMES IS ALL YOU NEED - Deep Learning Meme Review - Episode 2 (Part 1 of 2)
2020-12-16ReBeL - Combining Deep Reinforcement Learning and Search for Imperfect-Information Games (Explained)
2020-12-132M All-In into $5 Pot! WWYD? Daniel Negreanu's No-Limit Hold'em Challenge! (Poker Hand Analysis)
2020-12-01DeepMind's AlphaFold 2 Explained! AI Breakthrough in Protein Folding! What we know (& what we don't)
2020-11-29Predictive Coding Approximates Backprop along Arbitrary Computation Graphs (Paper Explained)
2020-11-22Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)
2020-11-15[News] Soccer AI FAILS and mixes up ball and referee's bald head.
2020-11-10Underspecification Presents Challenges for Credibility in Modern Machine Learning (Paper Explained)
2020-11-02Language Models are Open Knowledge Graphs (Paper Explained)
2020-10-26Rethinking Attention with Performers (Paper Explained)
2020-10-17LambdaNetworks: Modeling long-range Interactions without Attention (Paper Explained)
2020-10-11Descending through a Crowded Valley -- Benchmarking Deep Learning Optimizers (Paper Explained)
2020-10-04An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained)
2020-10-03Training more effective learned optimizers, and using them to train themselves (Paper Explained)
2020-09-18The Hardware Lottery (Paper Explained)
2020-09-13Assessing Game Balance with AlphaZero: Exploring Alternative Rule Sets in Chess (Paper Explained)
2020-09-07Learning to summarize from human feedback (Paper Explained)
2020-09-02Self-classifying MNIST Digits (Paper Explained)
2020-08-28Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
nlp
natural language processing
bert
gpt
gpt2
gpt-2
gpt3
gpt-3
gpt 2
gpt 3
knowledge graph
knowledge base
language
natural language understanding
berkeley
uc berkeley
dawn song
unsupervised
extraction
corpus
wikidata
wikipedia
entity linking
entity recognition
spacy
attention
attention matrix
beam search
viterbi
causal attention
language model
autoregressive