Anupam Praksah: A Quantum Interior Point Method for LPs and SDPs

Channel:
Subscribers:
2,520
Published on ● Video Link: https://www.youtube.com/watch?v=TAzoLGVjlLc



Category:
Let's Play
Duration: 58:14
281 views
0


A talk by Anupam Prakash at the Quantum Machine Learning Workshop, hosted September 24-28, 2018 by the Joint Center for Quantum Information and Computer Science at the University of Maryland (QuICS).

Abstract: We present a quantum interior point method with worst case running time $\widetilde{O}(\frac{n^{2.5}}{\xi^{2}} \mu \kappa^3 \log (1/\epsilon))$ for SDPs and $\widetilde{O}(\frac{n^{1.5}}{\xi^{2}} \mu \kappa^3 \log (1/\epsilon))$ for LPs, where the output of our algorithm is a pair of matrices $(S,Y)$ that are $\epsilon$-optimal $\xi$-approximate SDP solutions. The factor $\mu$ is at most $\sqrt{2}n$ for SDPs and $\sqrt{2n}$ for LP's, and $\kappa$ is an upper bound on the condition number of the intermediate solution matrices. For the case where the intermediate matrices for the interior point method are well conditioned, our method provides a polynomial speedup over the best known classical SDP solvers and interior point based LP solvers, which have a worst case running time of $O(n^{6})$ and $O(n^{3.5})$ respectively. Our results build upon recently developed techniques for quantum linear algebra and pave the way for the development of quantum algorithms for a variety of applications in optimization and machine learning.




Other Videos By QuICS


2019-04-04Ramis Movassagh: Supercritical Entanglement: counter-examples to the area law for quantum matter
2019-03-29Serge Fehr: Security of the Fiat-Shamir Transformation in the Quantum Random Oracle Model
2018-10-31Mario Szegedy: A New Algorithm for Product Decomposition in Quantum Signal Processing
2018-10-31Scott Aaronson: Gentle Measurement of Quantum States and Differential Privacy
2018-10-31Seth Lloyd: Quantum Generative Adversarial Networks
2018-10-31Norbert Linke: Quantum Machine Learning with Trapped Ions
2018-10-31Kristan Temme: Supervised Learning with Quantum Enhanced Feature Spaces
2018-10-31Soheil Feizi: Generative Adversarial Networks: Formulation, Design and Computation
2018-10-31Nathan Wiebe: Optimizing Quantum Optimization Algorithms via Faster Quantum Gradient Computation
2018-10-31Rolando Somma: Quantum Algorithms for Systems of Linear Equations
2018-10-31Anupam Praksah: A Quantum Interior Point Method for LPs and SDPs
2018-10-31Furong Huang: Discovery of Latent Factors in High-dimensional Data Using Tensor Methods
2018-10-31Fernando Brandao: Quantum Speed-up for SDPs and Kernel Learning
2018-10-31Srinivasan Arunachalam: Strengths and weaknesses of quantum examples for learning
2018-10-31Vedran Dunjko: A Route towards Quantum-Enhanced Artificial Intelligence
2018-10-31Elad Hazan: Efficient Optimization for Machine Learning: Beyond Stochastic Gradient Descent
2017-10-11John Preskill: QEC in 2017—Past, present, and future
2017-10-11Sepehr Nezami: Quantum Error Correction of Reference Frame Information
2017-10-11Anirudh Krishna: Performance of hyperbolic surface codes
2017-10-11Brian Swingle: Entanglement, Wormholes, and Quantum Error Correction
2017-10-11Christa Flühmann: Preparation of Grid state qubits by sequential modular position measurements



Tags:
machine learning