Nathan Wiebe: Optimizing Quantum Optimization Algorithms via Faster Quantum Gradient Computation

Channel:
Subscribers:
2,450
Published on ● Video Link: https://www.youtube.com/watch?v=574nu_cUjm4



Duration: 52:45
957 views
0


A talk by Nathan Wiebe at the Quantum Machine Learning Workshop, hosted September 24-28, 2018 by the Joint Center for Quantum Information and Computer Science at the University of Maryland (QuICS).

Abstract: We consider a generic framework of optimization algorithms based on gradient descent. We develop a quantum algorithm that computes the gradient of a multi-variate real-valued function by evaluating it at only a logarithmic number of points in superposition. Our algorithm is an improved version of Stephen Jordan's gradient computation algorithm, providing an approximation of the gradient ∇f with quadratically better dependence on the evaluation accuracy of f, for an important class of smooth functions. Furthermore, we show that most objective functions arising from quantum optimization procedures satisfy the necessary smoothness conditions, hence our algorithm provides a quadratic improvement in the complexity of computing their gradient. We also show that in a continuous phase-query model, our gradient computation algorithm has optimal query complexity up to poly-logarithmic factors, for a particular class of smooth functions. Moreover, we show that for low-degree multivariate polynomials our algorithm can provide exponential speedups compared to Jordan's algorithm in terms of the dimension d.
One of the technical challenges in applying our gradient computation procedure for quantum optimization problems is the need to convert between a probability oracle (which is common in quantum optimization procedures) and a phase oracle (which is common in quantum algorithms) of the objective function f. We provide efficient subroutines to perform this delicate interconversion between the two types of oracles incurring only a logarithmic overhead, which might be of independent interest. Finally, using these tools we improve the runtime of prior approaches for training quantum auto-encoders, variational quantum eigensolvers (VQE), and quantum approximate optimization algorithms (QAOA).




Other Videos By QuICS


2019-05-28Fred Chong: Closing the Gap between Quantum Algorithms and Machines with Hardware-Software Co-Design
2019-05-28Anurag Anshu: Quantum decoupling (...) and the entanglement cost of one-shot quantum protocols
2019-04-04Ramis Movassagh: Supercritical Entanglement: counter-examples to the area law for quantum matter
2019-03-29Serge Fehr: Security of the Fiat-Shamir Transformation in the Quantum Random Oracle Model
2018-10-31Mario Szegedy: A New Algorithm for Product Decomposition in Quantum Signal Processing
2018-10-31Scott Aaronson: Gentle Measurement of Quantum States and Differential Privacy
2018-10-31Seth Lloyd: Quantum Generative Adversarial Networks
2018-10-31Norbert Linke: Quantum Machine Learning with Trapped Ions
2018-10-31Kristan Temme: Supervised Learning with Quantum Enhanced Feature Spaces
2018-10-31Soheil Feizi: Generative Adversarial Networks: Formulation, Design and Computation
2018-10-31Nathan Wiebe: Optimizing Quantum Optimization Algorithms via Faster Quantum Gradient Computation
2018-10-31Rolando Somma: Quantum Algorithms for Systems of Linear Equations
2018-10-31Anupam Praksah: A Quantum Interior Point Method for LPs and SDPs
2018-10-31Furong Huang: Discovery of Latent Factors in High-dimensional Data Using Tensor Methods
2018-10-31Fernando Brandao: Quantum Speed-up for SDPs and Kernel Learning
2018-10-31Srinivasan Arunachalam: Strengths and weaknesses of quantum examples for learning
2018-10-31Vedran Dunjko: A Route towards Quantum-Enhanced Artificial Intelligence
2018-10-31Elad Hazan: Efficient Optimization for Machine Learning: Beyond Stochastic Gradient Descent
2017-10-11John Preskill: QEC in 2017—Past, present, and future
2017-10-11Sepehr Nezami: Quantum Error Correction of Reference Frame Information
2017-10-11Anirudh Krishna: Performance of hyperbolic surface codes



Tags:
machine learning