Kristan Temme: Supervised Learning with Quantum Enhanced Feature Spaces

Channel:
Subscribers:
2,450
Published on ● Video Link: https://www.youtube.com/watch?v=rzSYSsTllVE



Duration: 57:38
1,968 views
0


A talk by Kristan Temme at the Quantum Machine Learning Workshop, hosted September 24-28, 2018 by the Joint Center for Quantum Information and Computer Science at the University of Maryland (QuICS).

Abstract: Near-term applications of early quantum devices rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates. This problem was, at least in theory, remedied with the advent of quantum error correction. However, the overhead that is needed to implement a fully fault-tolerant gate set with current codes and current devices seems prohibitively large. In turn, steady progress is made in improving the quality of the quantum hardware and we believe that we can build machines in the near term that cannot be emulated by a conventional computer. In light of recent progress mitigating the effect of decoherence on expectation values, it becomes interesting to ask what these noisy devices can be used for. In this talk we will present our advances in finding quantum machine learning applications for noisy quantum computers. We propose, and experimentally implement, two classification algorithms on a superconducting processor. Both methods represent the feature space of the classification problem in terms of quantum states, taking advantage of the large dimensionality of Hilbert space. One method, the quantum variational classifier operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers to machine learning.




Other Videos By QuICS


2019-06-04TQC 2019: Day 2
2019-06-03TQC 2019 Day 1
2019-05-28Fred Chong: Closing the Gap between Quantum Algorithms and Machines with Hardware-Software Co-Design
2019-05-28Anurag Anshu: Quantum decoupling (...) and the entanglement cost of one-shot quantum protocols
2019-04-04Ramis Movassagh: Supercritical Entanglement: counter-examples to the area law for quantum matter
2019-03-29Serge Fehr: Security of the Fiat-Shamir Transformation in the Quantum Random Oracle Model
2018-10-31Mario Szegedy: A New Algorithm for Product Decomposition in Quantum Signal Processing
2018-10-31Scott Aaronson: Gentle Measurement of Quantum States and Differential Privacy
2018-10-31Seth Lloyd: Quantum Generative Adversarial Networks
2018-10-31Norbert Linke: Quantum Machine Learning with Trapped Ions
2018-10-31Kristan Temme: Supervised Learning with Quantum Enhanced Feature Spaces
2018-10-31Soheil Feizi: Generative Adversarial Networks: Formulation, Design and Computation
2018-10-31Nathan Wiebe: Optimizing Quantum Optimization Algorithms via Faster Quantum Gradient Computation
2018-10-31Rolando Somma: Quantum Algorithms for Systems of Linear Equations
2018-10-31Anupam Praksah: A Quantum Interior Point Method for LPs and SDPs
2018-10-31Furong Huang: Discovery of Latent Factors in High-dimensional Data Using Tensor Methods
2018-10-31Fernando Brandao: Quantum Speed-up for SDPs and Kernel Learning
2018-10-31Srinivasan Arunachalam: Strengths and weaknesses of quantum examples for learning
2018-10-31Vedran Dunjko: A Route towards Quantum-Enhanced Artificial Intelligence
2018-10-31Elad Hazan: Efficient Optimization for Machine Learning: Beyond Stochastic Gradient Descent
2017-10-11John Preskill: QEC in 2017—Past, present, and future



Tags:
machine learning