Soheil Feizi: Generative Adversarial Networks: Formulation, Design and Computation

Channel:
Subscribers:
2,450
Published on ● Video Link: https://www.youtube.com/watch?v=iEzxb0uVDQg



Duration: 1:01:06
977 views
0


A talk by Soheil Feizi at the Quantum Machine Learning Workshop, hosted September 24-28, 2018 by the Joint Center for Quantum Information and Computer Science at the University of Maryland (QuICS).

Abstract: Learning a probability model from data is a fundamental problem in machine learning and statistics. A classical approach to this problem is to fit (approximately) an explicit probability model to the training data via a maximum likelihood estimation. Building off the success of deep learning, however, there has been another approach to this problem using Generative Adversarial Networks (GANs). GANs view this problem as a game between two sets of functions: a generator whose goal is to generate realistic fake samples and a discriminator whose goal is to distinguish between the real and fake samples. In this talk, I will explain challenges that we face in formulation, design and computation of GANs. Leveraging a connection between supervised and unsupervised learning, I will then elaborate how we can overcome these issues by proposing a model-based view to GANs.




Other Videos By QuICS


2019-06-03TQC 2019 Day 1
2019-05-28Fred Chong: Closing the Gap between Quantum Algorithms and Machines with Hardware-Software Co-Design
2019-05-28Anurag Anshu: Quantum decoupling (...) and the entanglement cost of one-shot quantum protocols
2019-04-04Ramis Movassagh: Supercritical Entanglement: counter-examples to the area law for quantum matter
2019-03-29Serge Fehr: Security of the Fiat-Shamir Transformation in the Quantum Random Oracle Model
2018-10-31Mario Szegedy: A New Algorithm for Product Decomposition in Quantum Signal Processing
2018-10-31Scott Aaronson: Gentle Measurement of Quantum States and Differential Privacy
2018-10-31Seth Lloyd: Quantum Generative Adversarial Networks
2018-10-31Norbert Linke: Quantum Machine Learning with Trapped Ions
2018-10-31Kristan Temme: Supervised Learning with Quantum Enhanced Feature Spaces
2018-10-31Soheil Feizi: Generative Adversarial Networks: Formulation, Design and Computation
2018-10-31Nathan Wiebe: Optimizing Quantum Optimization Algorithms via Faster Quantum Gradient Computation
2018-10-31Rolando Somma: Quantum Algorithms for Systems of Linear Equations
2018-10-31Anupam Praksah: A Quantum Interior Point Method for LPs and SDPs
2018-10-31Furong Huang: Discovery of Latent Factors in High-dimensional Data Using Tensor Methods
2018-10-31Fernando Brandao: Quantum Speed-up for SDPs and Kernel Learning
2018-10-31Srinivasan Arunachalam: Strengths and weaknesses of quantum examples for learning
2018-10-31Vedran Dunjko: A Route towards Quantum-Enhanced Artificial Intelligence
2018-10-31Elad Hazan: Efficient Optimization for Machine Learning: Beyond Stochastic Gradient Descent
2017-10-11John Preskill: QEC in 2017—Past, present, and future
2017-10-11Sepehr Nezami: Quantum Error Correction of Reference Frame Information



Tags:
machine learning