Norbert Linke: Quantum Machine Learning with Trapped Ions

Channel:
Subscribers:
2,450
Published on ● Video Link: https://www.youtube.com/watch?v=XTzTJJBFHv4



Duration: 46:29
619 views
0


A talk by Norbert Linke at the Quantum Machine Learning Workshop, hosted September 24-28, 2018 by the Joint Center for Quantum Information and Computer Science at the University of Maryland (QuICS).

Abstract: To realize the potential of quantum machine learning, a scalable hardware platform is required, for which trapped ions are a promising candidate. We present a modular quantum computing architecture comprised of a chain of 171Yb+ ions with individual Raman beam addressing and individual readout [1]. We use the transverse modes of motion in the chain to produce entangling gates between any qubit pair. This creates a fully connected system which can be configured to run any sequence of single- and two-qubit gates, making it in effect an arbitrarily programmable quantum computer. We have applied this versatile quantum system in a number of different demonstrations relating to machine learning in a quantum-classical hybrid approach, such as error mitigation in the processor itself [2], finding the ground state binding energy of the deuteron nucleus, the training of shallow circuits [3], and the preparation of quantum critical states using a quantum approximate optimization algorithm (QAOA) scheme. Recent results from these efforts, and concepts for scaling up the architecture will be discussed.

[1] S. Debnath et al., Nature 563:63 (2016)
[2] A. Seif et al., J. Phys. B 51 174006 (2018)
[3] M. Benedetti et al., arXiv:1801.07686 (2018)




Other Videos By QuICS


2019-06-05TQC 2019 Day 3
2019-06-04TQC 2019: Day 2
2019-06-03TQC 2019 Day 1
2019-05-28Fred Chong: Closing the Gap between Quantum Algorithms and Machines with Hardware-Software Co-Design
2019-05-28Anurag Anshu: Quantum decoupling (...) and the entanglement cost of one-shot quantum protocols
2019-04-04Ramis Movassagh: Supercritical Entanglement: counter-examples to the area law for quantum matter
2019-03-29Serge Fehr: Security of the Fiat-Shamir Transformation in the Quantum Random Oracle Model
2018-10-31Mario Szegedy: A New Algorithm for Product Decomposition in Quantum Signal Processing
2018-10-31Scott Aaronson: Gentle Measurement of Quantum States and Differential Privacy
2018-10-31Seth Lloyd: Quantum Generative Adversarial Networks
2018-10-31Norbert Linke: Quantum Machine Learning with Trapped Ions
2018-10-31Kristan Temme: Supervised Learning with Quantum Enhanced Feature Spaces
2018-10-31Soheil Feizi: Generative Adversarial Networks: Formulation, Design and Computation
2018-10-31Nathan Wiebe: Optimizing Quantum Optimization Algorithms via Faster Quantum Gradient Computation
2018-10-31Rolando Somma: Quantum Algorithms for Systems of Linear Equations
2018-10-31Anupam Praksah: A Quantum Interior Point Method for LPs and SDPs
2018-10-31Furong Huang: Discovery of Latent Factors in High-dimensional Data Using Tensor Methods
2018-10-31Fernando Brandao: Quantum Speed-up for SDPs and Kernel Learning
2018-10-31Srinivasan Arunachalam: Strengths and weaknesses of quantum examples for learning
2018-10-31Vedran Dunjko: A Route towards Quantum-Enhanced Artificial Intelligence
2018-10-31Elad Hazan: Efficient Optimization for Machine Learning: Beyond Stochastic Gradient Descent



Tags:
machine learning