Fake It Till You Make It: Face Analysis In The Wild Using Synthetic Data Alone

Fake It Till You Make It: Face Analysis In The Wild Using Synthetic Data Alone

Subscribers:
344,000
Published on ● Video Link: https://www.youtube.com/watch?v=wlOMpQe8luQ



Duration: 2:36
16,550 views
250


We demonstrate that it is possible to perform face-related computer vision in the wild using synthetic data alone. The community has long enjoyed the benefits of synthesizing training data with graphics, but the domain gap between real and synthetic data has remained a problem, especially for human faces. Researchers have tried to bridge this gap with data mixing, domain adaptation, and domain-adversarial training, but we show that it is possible to synthesize data with minimal domain gap so that models trained on synthetic data generalize to real in-the-wild datasets. We describe how to combine a procedurally-generated parametric 3D face model with a comprehensive library of hand-crafted assets to render training images with unprecedented realism and diversity. We train machine learning systems for face-related tasks such as landmark localization and face parsing, showing that synthetic data can both match real data in accuracy, as well as open up new approaches where manual labelling would be impossible.

Learn more about this research: https://microsoft.github.io/FaceSynthetics/
Mixed Reality & AI Lab – Cambridge: https://www.microsoft.com/en-us/research/lab/mixed-reality-ai-lab-cambridge/




Other Videos By Microsoft Research


2021-10-20Microsoft Research 2021 Global PhD Fellowship Recipients
2021-10-19Precision agriculture uses computer science to make farms more efficient and reduce climate change
2021-10-19Working at Microsoft Research Cambridge
2021-10-14Accelerating AI Innovation by Optimizing Infrastructure. With Dr. Muthian Sivathanu
2021-10-11In-Air Device Formations for Cross-Device Interaction via Multiple Spatially-Aware Armatures
2021-10-10HapticBots: Distributed Encountered-type Haptics for VR with Multiple Shape-changing Mobile Robots
2021-10-10X-Rings: A Hand-mounted 360 Degree Shape Display for Grasping in Virtual Reality [UIST 2021]
2021-10-07Convergence between CV and NLP Modeling and Learning
2021-10-05Safe Real-World Autonomy in Uncertain and Unstructured Environments
2021-10-05Women of Color and the Digital Labor of Repair
2021-10-01Fake It Till You Make It: Face Analysis In The Wild Using Synthetic Data Alone
2021-09-23ALIGN: Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
2021-09-23Zero-Shot Detection via Vision and Language Knowledge Distillation
2021-09-17Three Explorations on Pre-Training: an Analysis, an Approach, and an Architecture
2021-09-16Visual Recognition beyond Appearances, and its Robotic Applications
2021-09-16A Truly Unbiased Model
2021-09-16Visual question answering & reasoning over vision & language: Beyond limits of statistical learning?
2021-09-15MDETR: Modulated Detection for End-to-End Multi-Modal Understanding
2021-09-15Learning Commonsense Understanding through Language and Vision
2021-09-15Tightly Connecting Vision and Language
2021-09-15Learning from Unlabeled Videos for Recognition, Prediction, and Control



Tags:
computer vision
3D face model
face analysis
face-related computer vision
synthetic data