"I need a better description": An Investigation Into User Expectations For Differential Privacy

"I need a better description": An Investigation Into User Expectations For Differential Privacy

Subscribers:
348,000
Published on ● Video Link: https://www.youtube.com/watch?v=uG8rYYDf0mE



Duration: 55:42
717 views
0


A Google TechTalk, presented by Rachel Cummings, 2021/03/12
ABSTRACT: Differential Privacy for ML Series. Despite recent widespread deployment of differential privacy, relatively little is known about what users think of differential privacy. In this work, we seek to explore users' privacy expectations related to differential privacy. Specifically, we investigate (1) whether users care about the protections afforded by differential privacy, and (2) whether they are therefore more willing to share their data with differential private systems. Further, we attempt to understand (3) users' privacy expectations of the differential private systems they may encounter in practice and (4) their willingness to share data in such systems. To answer these questions, we use a series of rigorously conducted surveys (n=2424).

We find that users care about the kinds of information leaks against which differential privacy protects and are more willing to share their private information when the risks of these leaks are less likely to happen. Additionally, we find that the ways in which differential privacy is described in the wild haphazardly set users' privacy expectations, which can be misleading depending on the deployment. We synthesize our results into a framework for understanding a user's willingness to share information with differentially private systems, which takes into account the interaction between the user's prior privacy concerns and how differential privacy is described to them.

(joint work with Gabriel Kaptchuk and Elissa Redmiles)




Other Videos By Google TechTalks


2021-12-14The Platform Design Problem
2021-11-19Reducing Polarization and Increasing Diverse Navigability in Graphs
2021-10-12Near-Optimal Experimental Design for Networks: Independent Block Randomization
2021-10-06Greybeard Qualification (Linux Internals) part 1: Process Structure and IPC
2021-10-06Greybeard Qualification (Linux Internals) part 3: Memory Management
2021-10-06Greybeard Qualification (Linux Internals) part 2 Execution, Scheduling, Processes & Threads
2021-10-06Greybeard Qualification (Linux Internals) part 6: Networking & Building a Kernel
2021-10-06Greybeard Qualification (Linux Internals) part 5: Block Devices & File Systems
2021-10-06Greybeard Qualification (Linux Internals) part 4: Startup and Init
2021-09-30A Regret Analysis of Bilateral Trade
2021-09-29"I need a better description": An Investigation Into User Expectations For Differential Privacy
2021-09-29On the Convergence of Deep Learning with Differential Privacy
2021-09-29A Geometric View on Private Gradient-Based Optimization
2021-09-29BB84: Quantum Protected Cryptography
2021-09-29Fast and Memory Efficient Differentially Private-SGD via JL Projections
2021-09-29Leveraging Public Data for Practical Synthetic Data Generation
2021-07-13Efficient Exploration in Bayesian Optimization – Optimism and Beyond by Andreas Krause
2021-07-13Learning to Explore in Molecule Space by Yoshua Bengio
2021-07-13Resource Allocation in Multi-armed Bandits by Kirthevasan Kandasamy
2021-07-13Grey-box Bayesian Optimization by Peter Frazier
2021-06-10Is There a Mathematical Model of the Mind? (Panel Discussion)