\( \mathrm{ABC} \) is a right-angled triangle in which \( \angle B=90^{\circ} \) and \( B C=a \). If \( n \) points \( \mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots, \mathrm{L}_{n} \) on \( \mathrm{AB} \) are such that \( \mathrm{AB} \) is divided in \( n+1 \) equal parts and \( \mathrm{L}_{1} \mathrm{M}_{1}, \mathrm{~L}_{2} \mathrm{M}_{2}, \ldots, \mathrm{L}_{n} \mathrm{M}_{n} \) are line segments parallel to \( \mathrm{BC} \) and \( \mathrm{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{n} \) are on \( \mathrm{AC} \) then the sum of the lengths of \( \mathrm{L}_{1} \mathrm{M}_{1}, \mathrm{~L}_{2} \mathrm{M}_{2}, \ldots, \mathrm{L}_{n} \mathrm{M}_{n} \) is
(a) \( \frac{a(n+1)}{2} \)
(b) \( \frac{a(n-1)}{2} \)
(c) \( \frac{a n}{2} \)
(d) impossible to find from the given data
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live