DeepMind's AlphaFold 2 Explained! AI Breakthrough in Protein Folding! What we know (& what we don't)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=B9PL__gVxLI



Category:
Let's Play
Duration: 54:38
218,178 views
5,839


#deepmind #biology #ai

This is Biology's AlexNet moment! DeepMind solves a 50-year old problem in Protein Folding Prediction. AlphaFold 2 improves over DeepMind's 2018 AlphaFold system with a new architecture and massively outperforms all competition. In this Video, we take a look at how AlphaFold 1 works and what we can gather about AlphaFold 2 from the little information that's out there.

OUTLINE:
0:00 - Intro & Overview
3:10 - Proteins & Protein Folding
14:20 - AlphaFold 1 Overview
18:20 - Optimizing a differentiable geometric model at inference
25:40 - Learning the Spatial Graph Distance Matrix
31:20 - Multiple Sequence Alignment of Evolutionarily Similar Sequences
39:40 - Distance Matrix Output Results
43:45 - Guessing AlphaFold 2 (it's Transformers)
53:30 - Conclusion & Comments

AlphaFold 2 Blog: https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
AlphaFold 1 Blog: https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
AlphaFold 1 Paper: https://www.nature.com/articles/s41586-019-1923-7
MSA Reference: https://arxiv.org/abs/1211.1281
CASP14 Challenge: https://predictioncenter.org/casp14/index.cgi
CASP14 Result Bar Chart: https://www.predictioncenter.org/casp14/zscores_final.cgi

Paper Title: High Accuracy Protein Structure Prediction Using Deep Learning

Abstract:
Proteins are essential to life, supporting practically all its functions. They are large complex molecules, made up of chains of amino acids, and what a protein does largely depends on its unique 3D structure. Figuring out what shapes proteins fold into is known as the “protein folding problem”, and has stood as a grand challenge in biology for the past 50 years. In a major scientific advance, the latest version of our AI system AlphaFold has been recognised as a solution to this grand challenge by the organisers of the biennial Critical Assessment of protein Structure Prediction (CASP). This breakthrough demonstrates the impact AI can have on scientific discovery and its potential to dramatically accelerate progress in some of the most fundamental fields that explain and shape our world.

Authors: John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Kathryn Tunyasuvunakool, Olaf Ronneberger, Russ Bates, Augustin Žídek, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Anna Potapenko, Andrew J Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Martin Steinegger, Michalina Pacholska, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu, Pushmeet Kohli, Demis Hassabis.

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn: https://www.linkedin.com/in/yannic-kilcher-488534136/

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannickilcher
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n




Other Videos By Yannic Kilcher


2021-02-02Feedback Transformers: Addressing Some Limitations of Transformers with Feedback Memory (Explained)
2021-01-29SingularityNET - A Decentralized, Open Market and Network for AIs (Whitepaper Explained)
2021-01-22Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
2021-01-17STOCHASTIC MEME DESCENT - Deep Learning Meme Review - Episode 2 (Part 2 of 2)
2021-01-12OpenAI CLIP: ConnectingText and Images (Paper Explained)
2021-01-06OpenAI DALL·E: Creating Images from Text (Blog Post Explained)
2020-12-26Extracting Training Data from Large Language Models (Paper Explained)
2020-12-24MEMES IS ALL YOU NEED - Deep Learning Meme Review - Episode 2 (Part 1 of 2)
2020-12-16ReBeL - Combining Deep Reinforcement Learning and Search for Imperfect-Information Games (Explained)
2020-12-132M All-In into $5 Pot! WWYD? Daniel Negreanu's No-Limit Hold'em Challenge! (Poker Hand Analysis)
2020-12-01DeepMind's AlphaFold 2 Explained! AI Breakthrough in Protein Folding! What we know (& what we don't)
2020-11-29Predictive Coding Approximates Backprop along Arbitrary Computation Graphs (Paper Explained)
2020-11-22Fourier Neural Operator for Parametric Partial Differential Equations (Paper Explained)
2020-11-15[News] Soccer AI FAILS and mixes up ball and referee's bald head.
2020-11-10Underspecification Presents Challenges for Credibility in Modern Machine Learning (Paper Explained)
2020-11-02Language Models are Open Knowledge Graphs (Paper Explained)
2020-10-26Rethinking Attention with Performers (Paper Explained)
2020-10-17LambdaNetworks: Modeling long-range Interactions without Attention (Paper Explained)
2020-10-11Descending through a Crowded Valley -- Benchmarking Deep Learning Optimizers (Paper Explained)
2020-10-04An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Paper Explained)
2020-10-03Training more effective learned optimizers, and using them to train themselves (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
google
deepmind
deep mind
alphago
alphazero
alphafold
protein
dna
rna
folding
casp
casp14
alphafold 2
blog
hassabis
biology
translation
amino acid
transformer
convolution
residual
spatial graph
refine
gradient descent
van der waals
torsion angles
google ai
google brain
nobel prize
msa
multiple sequence alignment
covariation
evolution
contact prediction
distogram