On the Measure of Intelligence by François Chollet - Part 1: Foundations (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=3_qGrmD6iQY



Duration: 36:59
14,004 views
620


How does one measure the Intelligence of an AI? Is AlphaGo intelligent? How about GPT-3? In this landmark paper, Chollet proposes a solid measure of intelligence for AI that revolves around generalization, rather than skill.

OUTLINE:
0:00 - Intro
1:15 - The need for a measure of intelligence
3:35 - Intelligence as generalization ability
5:45 - Nature vs nurture
11:45 - Skill-based evaluation
18:30 - Generalization based evaluation
30:25 - Inspiration from psychometrics
36:30 - Conclusion

https://arxiv.org/abs/1911.01547

Abstract:
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

Authors: François Chollet

Thumbnail: Photo by mohamed hassan

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-06-12VirTex: Learning Visual Representations from Textual Annotations (Paper Explained)
2020-06-11Linformer: Self-Attention with Linear Complexity (Paper Explained)
2020-06-10End-to-End Adversarial Text-to-Speech (Paper Explained)
2020-06-09TransCoder: Unsupervised Translation of Programming Languages (Paper Explained)
2020-06-08JOIN ME for the NeurIPS 2020 Flatland Multi-Agent RL Challenge!
2020-06-07BLEURT: Learning Robust Metrics for Text Generation (Paper Explained)
2020-06-06Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search (Paper Explained)
2020-06-05CornerNet: Detecting Objects as Paired Keypoints (Paper Explained)
2020-06-04Movement Pruning: Adaptive Sparsity by Fine-Tuning (Paper Explained)
2020-06-03Learning To Classify Images Without Labels (Paper Explained)
2020-06-02On the Measure of Intelligence by François Chollet - Part 1: Foundations (Paper Explained)
2020-06-01Dynamics-Aware Unsupervised Discovery of Skills (Paper Explained)
2020-05-31Synthesizer: Rethinking Self-Attention in Transformer Models (Paper Explained)
2020-05-30[Code] How to use Facebook's DETR object detection algorithm in Python (Full Tutorial)
2020-05-29GPT-3: Language Models are Few-Shot Learners (Paper Explained)
2020-05-28DETR: End-to-End Object Detection with Transformers (Paper Explained)
2020-05-27mixup: Beyond Empirical Risk Minimization (Paper Explained)
2020-05-26A critical analysis of self-supervision, or what we can learn from a single image (Paper Explained)
2020-05-25Deep image reconstruction from human brain activity (Paper Explained)
2020-05-24Regularizing Trajectory Optimization with Denoising Autoencoders (Paper Explained)
2020-05-23[News] The NeurIPS Broader Impact Statement



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
chollet
keras
google
francois
intelligence
iq
iq test
deep neural networks
prior
skill
performance
measurement
measure
test
number
intelligent
smart
learning
generalization
ability
experience
humans
evolution
nature
nurture
psychometrics
range
adaptability
arc
kaggle
difficulty
entropy
core knowledge
objectness
navigation
contact
agent
goal