Learning To Classify Images Without Labels (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=hQEnzdLkPj4



Duration: 45:34
43,414 views
1,551


How do you learn labels without labels? How do you classify images when you don't know what to classify them into? This paper investigates a new combination of representation learning, clustering, and self-labeling in order to group visually similar images together - and achieves surprisingly high accuracy on benchmark datasets.

OUTLINE:
0:00 - Intro & High-level Overview
2:15 - Problem Statement
4:50 - Why naive Clustering does not work
9:25 - Representation Learning
13:40 - Nearest-neighbor-based Clustering
28:00 - Self-Labeling
32:10 - Experiments
38:20 - ImageNet Experiments
41:00 - Overclustering

Paper: https://arxiv.org/abs/2005.12320
Code: https://github.com/wvangansbeke/Unsupervised-Classification

Abstract:
Is it possible to automatically classify images without the use of ground-truth annotations? Or when even the classes themselves, are not a priori known? These remain important, and open questions in computer vision. Several approaches have tried to tackle this problem in an end-to-end fashion. In this paper, we deviate from recent works, and advocate a two-step approach where feature learning and clustering are decoupled. First, a self-supervised task from representation learning is employed to obtain semantically meaningful features. Second, we use the obtained features as a prior in a learnable clustering approach. In doing so, we remove the ability for cluster learning to depend on low-level features, which is present in current end-to-end learning approaches. Experimental evaluation shows that we outperform state-of-the-art methods by huge margins, in particular +26.9% on CIFAR10, +21.5% on CIFAR100-20 and +11.7% on STL10 in terms of classification accuracy. Furthermore, results on ImageNet show that our approach is the first to scale well up to 200 randomly selected classes, obtaining 69.3% top-1 and 85.5% top-5 accuracy, and marking a difference of less than 7.5% with fully-supervised methods. Finally, we applied our approach to all 1000 classes on ImageNet, and found the results to be very encouraging. The code will be made publicly available.

Authors: Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, Luc Van Gool

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-06-13Deep Differential System Stability - Learning advanced computations from examples (Paper Explained)
2020-06-12VirTex: Learning Visual Representations from Textual Annotations (Paper Explained)
2020-06-11Linformer: Self-Attention with Linear Complexity (Paper Explained)
2020-06-10End-to-End Adversarial Text-to-Speech (Paper Explained)
2020-06-09TransCoder: Unsupervised Translation of Programming Languages (Paper Explained)
2020-06-08JOIN ME for the NeurIPS 2020 Flatland Multi-Agent RL Challenge!
2020-06-07BLEURT: Learning Robust Metrics for Text Generation (Paper Explained)
2020-06-06Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search (Paper Explained)
2020-06-05CornerNet: Detecting Objects as Paired Keypoints (Paper Explained)
2020-06-04Movement Pruning: Adaptive Sparsity by Fine-Tuning (Paper Explained)
2020-06-03Learning To Classify Images Without Labels (Paper Explained)
2020-06-02On the Measure of Intelligence by François Chollet - Part 1: Foundations (Paper Explained)
2020-06-01Dynamics-Aware Unsupervised Discovery of Skills (Paper Explained)
2020-05-31Synthesizer: Rethinking Self-Attention in Transformer Models (Paper Explained)
2020-05-30[Code] How to use Facebook's DETR object detection algorithm in Python (Full Tutorial)
2020-05-29GPT-3: Language Models are Few-Shot Learners (Paper Explained)
2020-05-28DETR: End-to-End Object Detection with Transformers (Paper Explained)
2020-05-27mixup: Beyond Empirical Risk Minimization (Paper Explained)
2020-05-26A critical analysis of self-supervision, or what we can learn from a single image (Paper Explained)
2020-05-25Deep image reconstruction from human brain activity (Paper Explained)
2020-05-24Regularizing Trajectory Optimization with Denoising Autoencoders (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
ethz
clustering
self-supervision
self-labeling
entropy
dot product
representation learning
cnns
convolutional neural network
deep cluster
nce
noise contrastive estimation
unsupervised
overcluster
imagenet
cifar10
nearest neighbors