Linformer: Self-Attention with Linear Complexity (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=-_2AF9Lhweo



Duration: 50:24
27,566 views
919


Transformers are notoriously resource-intensive because their self-attention mechanism requires a squared number of memory and computations in the length of the input sequence. The Linformer Model gets around that by using the fact that often, the actual information in the attention matrix is of lower rank and can be approximated.

OUTLINE:
0:00 - Intro & Overview
1:40 - The Complexity of Self-Attention
4:50 - Embedding Dimension & Multiple Heads
8:45 - Formal Attention
10:30 - Empirical Investigation into RoBERTa
20:00 - Theorem: Self-Attention is Low Rank
28:10 - Linear Self-Attention Method
36:15 - Theorem: Linear Self-Attention
44:10 - Language Modeling
46:40 - NLP Benchmarks
47:50 - Compute Time & Memory Gains
48:20 - Broader Impact Statement
49:55 - Conclusion

Paper: https://arxiv.org/abs/2006.04768

Abstract:
Large transformer models have shown extraordinary success in achieving state-of-the-art results in many natural language processing applications. However, training and deploying these models can be prohibitively costly for long sequences, as the standard self-attention mechanism of the Transformer uses O(n2) time and space with respect to sequence length. In this paper, we demonstrate that the self-attention mechanism can be approximated by a low-rank matrix. We further exploit this finding to propose a new self-attention mechanism, which reduces the overall self-attention complexity from O(n2) to O(n) in both time and space. The resulting linear transformer, the \textit{Linformer}, performs on par with standard Transformer models, while being much more memory- and time-efficient.

Authors: Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-06-21SIREN: Implicit Neural Representations with Periodic Activation Functions (Paper Explained)
2020-06-20Big Self-Supervised Models are Strong Semi-Supervised Learners (Paper Explained)
2020-06-19On the Measure of Intelligence by François Chollet - Part 2: Human Priors (Paper Explained)
2020-06-18Image GPT: Generative Pretraining from Pixels (Paper Explained)
2020-06-17BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)
2020-06-16TUNIT: Rethinking the Truly Unsupervised Image-to-Image Translation (Paper Explained)
2020-06-15A bio-inspired bistable recurrent cell allows for long-lasting memory (Paper Explained)
2020-06-14SynFlow: Pruning neural networks without any data by iteratively conserving synaptic flow
2020-06-13Deep Differential System Stability - Learning advanced computations from examples (Paper Explained)
2020-06-12VirTex: Learning Visual Representations from Textual Annotations (Paper Explained)
2020-06-11Linformer: Self-Attention with Linear Complexity (Paper Explained)
2020-06-10End-to-End Adversarial Text-to-Speech (Paper Explained)
2020-06-09TransCoder: Unsupervised Translation of Programming Languages (Paper Explained)
2020-06-08JOIN ME for the NeurIPS 2020 Flatland Multi-Agent RL Challenge!
2020-06-07BLEURT: Learning Robust Metrics for Text Generation (Paper Explained)
2020-06-06Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search (Paper Explained)
2020-06-05CornerNet: Detecting Objects as Paired Keypoints (Paper Explained)
2020-06-04Movement Pruning: Adaptive Sparsity by Fine-Tuning (Paper Explained)
2020-06-03Learning To Classify Images Without Labels (Paper Explained)
2020-06-02On the Measure of Intelligence by François Chollet - Part 1: Foundations (Paper Explained)
2020-06-01Dynamics-Aware Unsupervised Discovery of Skills (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
facebook
linear
quadratic
transformer
attention
self-attention
multi-head attention
t2t
vasvani
bert
devlin
roberta
glue
language modeling
perplexity
dot product
johnson
lindenstrauss
random projection