DETR: End-to-End Object Detection with Transformers (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=T35ba_VXkMY



Duration: 40:57
129,991 views
4,757


Object detection in images is a notoriously hard task! Objects can be of a wide variety of classes, can be numerous or absent, they can occlude each other or be out of frame. All of this makes it even more surprising that the architecture in this paper is so simple. Thanks to a clever loss function, a single Transformer stacked on a CNN is enough to handle the entire task!

OUTLINE:
0:00 - Intro & High-Level Overview
0:50 - Problem Formulation
2:30 - Architecture Overview
6:20 - Bipartite Match Loss Function
15:55 - Architecture in Detail
25:00 - Object Queries
31:00 - Transformer Properties
35:40 - Results

ERRATA:
When I introduce bounding boxes, I say they consist of x and y, but you also need the width and height.

My Video on Transformers: https://youtu.be/iDulhoQ2pro

Paper: https://arxiv.org/abs/2005.12872
Blog: https://ai.facebook.com/blog/end-to-end-object-detection-with-transformers/
Code: https://github.com/facebookresearch/detr

Abstract:
We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive baselines. Training code and pretrained models are available at this https URL.

Authors: Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-06-07BLEURT: Learning Robust Metrics for Text Generation (Paper Explained)
2020-06-06Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search (Paper Explained)
2020-06-05CornerNet: Detecting Objects as Paired Keypoints (Paper Explained)
2020-06-04Movement Pruning: Adaptive Sparsity by Fine-Tuning (Paper Explained)
2020-06-03Learning To Classify Images Without Labels (Paper Explained)
2020-06-02On the Measure of Intelligence by François Chollet - Part 1: Foundations (Paper Explained)
2020-06-01Dynamics-Aware Unsupervised Discovery of Skills (Paper Explained)
2020-05-31Synthesizer: Rethinking Self-Attention in Transformer Models (Paper Explained)
2020-05-30[Code] How to use Facebook's DETR object detection algorithm in Python (Full Tutorial)
2020-05-29GPT-3: Language Models are Few-Shot Learners (Paper Explained)
2020-05-28DETR: End-to-End Object Detection with Transformers (Paper Explained)
2020-05-27mixup: Beyond Empirical Risk Minimization (Paper Explained)
2020-05-26A critical analysis of self-supervision, or what we can learn from a single image (Paper Explained)
2020-05-25Deep image reconstruction from human brain activity (Paper Explained)
2020-05-24Regularizing Trajectory Optimization with Denoising Autoencoders (Paper Explained)
2020-05-23[News] The NeurIPS Broader Impact Statement
2020-05-22When BERT Plays the Lottery, All Tickets Are Winning (Paper Explained)
2020-05-21[News] OpenAI Model Generates Python Code
2020-05-20Investigating Human Priors for Playing Video Games (Paper & Demo)
2020-05-19iMAML: Meta-Learning with Implicit Gradients (Paper Explained)
2020-05-18[Code] PyTorch sentiment classifier from scratch with Huggingface NLP Library (Full Tutorial)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
facebook
fair
fb
facebook ai
object detection
coco
bounding boxes
hungarian
matching
bipartite
cnn
transformer
attention
encoder
decoder
images
vision
pixels
segmentation
classes
stuff
things
attention mechanism
squared
unrolled
overlap
threshold
rcnn