mixup: Beyond Empirical Risk Minimization (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=a-VQfQqIMrE



Duration: 13:02
10,624 views
521


Neural Networks often draw hard boundaries in high-dimensional space, which makes them very brittle. Mixup is a technique that linearly interpolates between data and labels at training time and achieves much smoother and more regular class boundaries.

OUTLINE:
0:00 - Intro
0:30 - The problem with ERM
2:50 - Mixup
6:40 - Code
9:35 - Results

https://arxiv.org/abs/1710.09412

Abstract:
Large deep neural networks are powerful, but exhibit undesirable behaviors such as memorization and sensitivity to adversarial examples. In this work, we propose mixup, a simple learning principle to alleviate these issues. In essence, mixup trains a neural network on convex combinations of pairs of examples and their labels. By doing so, mixup regularizes the neural network to favor simple linear behavior in-between training examples. Our experiments on the ImageNet-2012, CIFAR-10, CIFAR-100, Google commands and UCI datasets show that mixup improves the generalization of state-of-the-art neural network architectures. We also find that mixup reduces the memorization of corrupt labels, increases the robustness to adversarial examples, and stabilizes the training of generative adversarial networks.

Authors: Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-06-06Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search (Paper Explained)
2020-06-05CornerNet: Detecting Objects as Paired Keypoints (Paper Explained)
2020-06-04Movement Pruning: Adaptive Sparsity by Fine-Tuning (Paper Explained)
2020-06-03Learning To Classify Images Without Labels (Paper Explained)
2020-06-02On the Measure of Intelligence by François Chollet - Part 1: Foundations (Paper Explained)
2020-06-01Dynamics-Aware Unsupervised Discovery of Skills (Paper Explained)
2020-05-31Synthesizer: Rethinking Self-Attention in Transformer Models (Paper Explained)
2020-05-30[Code] How to use Facebook's DETR object detection algorithm in Python (Full Tutorial)
2020-05-29GPT-3: Language Models are Few-Shot Learners (Paper Explained)
2020-05-28DETR: End-to-End Object Detection with Transformers (Paper Explained)
2020-05-27mixup: Beyond Empirical Risk Minimization (Paper Explained)
2020-05-26A critical analysis of self-supervision, or what we can learn from a single image (Paper Explained)
2020-05-25Deep image reconstruction from human brain activity (Paper Explained)
2020-05-24Regularizing Trajectory Optimization with Denoising Autoencoders (Paper Explained)
2020-05-23[News] The NeurIPS Broader Impact Statement
2020-05-22When BERT Plays the Lottery, All Tickets Are Winning (Paper Explained)
2020-05-21[News] OpenAI Model Generates Python Code
2020-05-20Investigating Human Priors for Playing Video Games (Paper & Demo)
2020-05-19iMAML: Meta-Learning with Implicit Gradients (Paper Explained)
2020-05-18[Code] PyTorch sentiment classifier from scratch with Huggingface NLP Library (Full Tutorial)
2020-05-17Planning to Explore via Self-Supervised World Models (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
classifier
dnn
cnn
high dimensions
class boundaries
mixing
interpolation
latent
beta
regularizer
regularization
generalization
adversarial examples
smooth