Deep Differential System Stability - Learning advanced computations from examples (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=l12GXD0t_RE



Duration: 36:49
6,756 views
276


Determining the stability properties of differential systems is a challenging task that involves very advanced symbolic and numeric mathematical manipulations. This paper shows that given enough training data, a simple language model with no underlying knowledge of mathematics can learn to solve these problems with remarkably high accuracy.

OUTLINE:
0:00 - Intro & Overview
3:15 - Differential System Tasks
11:30 - Datasets & Models
15:15 - Experiments
21:00 - Discussion & My Comments

Paper: https://arxiv.org/abs/2006.06462
My Video on Deep Learning for Symbolic Mathematics: https://youtu.be/p3sAF3gVMMA

Abstract:
Can advanced mathematical computations be learned from examples? Using transformers over large generated datasets, we train models to learn properties of differential systems, such as local stability, behavior at infinity and controllability. We achieve near perfect estimates of qualitative characteristics of the systems, and good approximations of numerical quantities, demonstrating that neural networks can learn advanced theorems and complex computations without built-in mathematical knowledge.

Authors: François Charton, Amaury Hayat, Guillaume Lample

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-06-23RepNet: Counting Out Time - Class Agnostic Video Repetition Counting in the Wild (Paper Explained)
2020-06-22[Drama] Yann LeCun against Twitter on Dataset Bias
2020-06-21SIREN: Implicit Neural Representations with Periodic Activation Functions (Paper Explained)
2020-06-20Big Self-Supervised Models are Strong Semi-Supervised Learners (Paper Explained)
2020-06-19On the Measure of Intelligence by François Chollet - Part 2: Human Priors (Paper Explained)
2020-06-18Image GPT: Generative Pretraining from Pixels (Paper Explained)
2020-06-17BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)
2020-06-16TUNIT: Rethinking the Truly Unsupervised Image-to-Image Translation (Paper Explained)
2020-06-15A bio-inspired bistable recurrent cell allows for long-lasting memory (Paper Explained)
2020-06-14SynFlow: Pruning neural networks without any data by iteratively conserving synaptic flow
2020-06-13Deep Differential System Stability - Learning advanced computations from examples (Paper Explained)
2020-06-12VirTex: Learning Visual Representations from Textual Annotations (Paper Explained)
2020-06-11Linformer: Self-Attention with Linear Complexity (Paper Explained)
2020-06-10End-to-End Adversarial Text-to-Speech (Paper Explained)
2020-06-09TransCoder: Unsupervised Translation of Programming Languages (Paper Explained)
2020-06-08JOIN ME for the NeurIPS 2020 Flatland Multi-Agent RL Challenge!
2020-06-07BLEURT: Learning Robust Metrics for Text Generation (Paper Explained)
2020-06-06Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search (Paper Explained)
2020-06-05CornerNet: Detecting Objects as Paired Keypoints (Paper Explained)
2020-06-04Movement Pruning: Adaptive Sparsity by Fine-Tuning (Paper Explained)
2020-06-03Learning To Classify Images Without Labels (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
math
derivative
ode
pde
solution
integral
gradient
jacobian
mathematics
language model
transformer
symbolic
numeric
stability
equilibrium
attention
tokens
dataset
abstract