TUNIT: Rethinking the Truly Unsupervised Image-to-Image Translation (Paper Explained)

Subscribers:
284,000
Published on ● Video Link: https://www.youtube.com/watch?v=sEG8hD64c_Q



Duration: 49:41
11,210 views
383


Image-to-Image translation usually requires corresponding samples or at least domain labels of the dataset. This paper removes that restriction and allows for fully unsupervised image translation of a source image to the style of one or many reference images. This is achieved by jointly training a guiding network that provides style information and pseudo-labels.

OUTLINE:
0:00 - Intro & Overview
1:20 - Unsupervised Image-to-Image Translation
7:05 - Architecture Overview
14:15 - Pseudo-Label Loss
19:30 - Encoder Style Contrastive Loss
25:30 - Adversarial Loss
31:20 - Generator Style Contrastive Loss
35:15 - Image Reconstruction Loss
36:55 - Architecture Recap
39:55 - Full Loss
42:05 - Experiments

Paper: https://arxiv.org/abs/2006.06500
Code: https://github.com/clovaai/tunit

Abstract:
Every recent image-to-image translation model uses either image-level (i.e. input-output pairs) or set-level (i.e. domain labels) supervision at minimum. However, even the set-level supervision can be a serious bottleneck for data collection in practice. In this paper, we tackle image-to-image translation in a fully unsupervised setting, i.e., neither paired images nor domain labels. To this end, we propose the truly unsupervised image-to-image translation method (TUNIT) that simultaneously learns to separate image domains via an information-theoretic approach and generate corresponding images using the estimated domain labels. Experimental results on various datasets show that the proposed method successfully separates domains and translates images across those domains. In addition, our model outperforms existing set-level supervised methods under a semi-supervised setting, where a subset of domain labels is provided. The source code is available at this https URL

Authors: Kyungjune Baek, Yunjey Choi, Youngjung Uh, Jaejun Yoo, Hyunjung Shim

Links:
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yannic-kilcher
Minds: https://www.minds.com/ykilcher




Other Videos By Yannic Kilcher


2020-06-26On the Measure of Intelligence by François Chollet - Part 3: The Math (Paper Explained)
2020-06-25Discovering Symbolic Models from Deep Learning with Inductive Biases (Paper Explained)
2020-06-24How I Read a Paper: Facebook's DETR (Video Tutorial)
2020-06-23RepNet: Counting Out Time - Class Agnostic Video Repetition Counting in the Wild (Paper Explained)
2020-06-22[Drama] Yann LeCun against Twitter on Dataset Bias
2020-06-21SIREN: Implicit Neural Representations with Periodic Activation Functions (Paper Explained)
2020-06-20Big Self-Supervised Models are Strong Semi-Supervised Learners (Paper Explained)
2020-06-19On the Measure of Intelligence by François Chollet - Part 2: Human Priors (Paper Explained)
2020-06-18Image GPT: Generative Pretraining from Pixels (Paper Explained)
2020-06-17BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)
2020-06-16TUNIT: Rethinking the Truly Unsupervised Image-to-Image Translation (Paper Explained)
2020-06-15A bio-inspired bistable recurrent cell allows for long-lasting memory (Paper Explained)
2020-06-14SynFlow: Pruning neural networks without any data by iteratively conserving synaptic flow
2020-06-13Deep Differential System Stability - Learning advanced computations from examples (Paper Explained)
2020-06-12VirTex: Learning Visual Representations from Textual Annotations (Paper Explained)
2020-06-11Linformer: Self-Attention with Linear Complexity (Paper Explained)
2020-06-10End-to-End Adversarial Text-to-Speech (Paper Explained)
2020-06-09TransCoder: Unsupervised Translation of Programming Languages (Paper Explained)
2020-06-08JOIN ME for the NeurIPS 2020 Flatland Multi-Agent RL Challenge!
2020-06-07BLEURT: Learning Robust Metrics for Text Generation (Paper Explained)
2020-06-06Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search (Paper Explained)



Tags:
deep learning
machine learning
arxiv
explained
neural networks
ai
artificial intelligence
paper
image translation
style transfer
unsupervised
clustering
self-supervised
cnn
convolutional neural networks
gan
generative adversarial network
generator
encoder
discriminator
conditional
style
pseudo-label
augmentation
cropping